Skip to main content
Log in

Malathion-Induced Surface Coupling with Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Malathion is one of the most commonly used organophosphorous pesticides worldwide. Gold nanoparticles can be used for the degradation and removal of 10 ppm malathion. The morphology of the prepared gold nanoparticle is characterized by transmission electron microscopy. Photodegradation of malathion on irradiation to different light sources was monitored using different tools such as UV–visible spectra and high-performance liquid chromatography. Photodegradation rate of malathion was enhanced in the presence of gold nanoparticles as a result of surface plasmon phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329

    Google Scholar 

  2. Link S, El-Sayed MA (2003) Optical properties and utrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  3. Mohamed MB, Volkov V, Link S et al (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  4. Mohamed MB, Ahmadi TS, Link S et al (2001) Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chem Phys Lett 343:55–63

    Article  CAS  Google Scholar 

  5. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  6. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  7. Min BK, Friend CM (2007) Heterogenous gold based catalysis for green chemistry: low temperature co-oxidation and propene oxidation. Chem Rev 107:2709–2724

    Article  CAS  Google Scholar 

  8. Sonawane RS, Dongare MK (2006) Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J Mol Catal A Chem 243:68–76

    Article  CAS  Google Scholar 

  9. Mrowetz M, Villa A, Prati L, Selli E (2007) Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye. Gold Bull 40:154–160

    Article  CAS  Google Scholar 

  10. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  11. Mulvaney P (2006) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  Google Scholar 

  12. Gupta PK (2004) Pesticide exposure - Indian scene. Toxicology 198:83–90

    Article  CAS  Google Scholar 

  13. Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M (2006) Preparation of high surface area titania (TiO2) films and powders using particulate sol–gel route aided by polymeric fugitive agents. Sensor Actuat B-120:86–95

    Article  Google Scholar 

  14. Zeljezic D, Garaj-Vrhovac V (2002) Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Chemosphere 46:295–303

    Article  CAS  Google Scholar 

  15. Fouad DM, Mohamed MB (2011) Photodegradation of chloridazon using coreshell magnetic nanocomposites. J Nanotechnol 2011:7. doi:10.1155/2011/416060, Article ID 416060

    Google Scholar 

  16. Fouad DM, Mohamed M (2011) Studies on the photo-catalytic activity of semiconductor nanostructures and their gold core–shell on the photodegradation of malathion. Nanotechnology 22:1–9

    Article  Google Scholar 

  17. Turkevich PCJ, Stevenson JH (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  18. Neppolian B, Haeryong J, Heechul C (2007) Photo degradation of 4-chlorophenol using TiO2 and Pt-TiO2 nanoparticles prepared by sol–gel method. Photo J Adv Oxi Technol 10:1–6

    Google Scholar 

  19. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesam V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere Ref Data 46:1173–1181

    Article  CAS  Google Scholar 

  20. Herrmann JM (1995) Heterogeneous photocatalysis: an emerging discipline involving multiphase systems. Cat Today 24:157–164

    Article  CAS  Google Scholar 

  21. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research 34:257–264

    Article  CAS  Google Scholar 

  22. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New York

    Book  Google Scholar 

  23. Kelly KL et al (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Physical Chem B 107:668–677

    Article  Google Scholar 

  24. Xie Y, Yuan C (2004) Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Appl Surf Sci 221:17–24

    Article  CAS  Google Scholar 

  25. Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal Gen 304:55–61

    Article  CAS  Google Scholar 

  26. Giorgetti E, Giusti A, Giammanco F, Laza S et al (2007) Photodegradation of PAMAM g5-stabilized aqueous suspensions of gold nanoparticles. Appl Surf Sci 254:1140–1144

    Article  CAS  Google Scholar 

  27. Min BK, Heo JE, Youn NK et al (2009) Tuning of the photocatalytic1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catal Commun 10:712–715

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Fouad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouad, D.M., Mohamed, M.B. Malathion-Induced Surface Coupling with Gold Nanoparticles. Plasmonics 8, 937–941 (2013). https://doi.org/10.1007/s11468-013-9493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9493-2

Keywords

Navigation