Skip to main content
Log in

Numerical Investagation of a Castle-like Contour Plasmonic Nanoantenna with Operating Wavelengths Ranging in Ultraviolet–Visible, Visible Light, and Infrared Light

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a new design of a plasmonic nanoantenna and numerically study its optical properties by means of the 3D finite element method. The nanoantenna is composed of two identical castle-like contour nanometal-filled dielectric media inside the hollows. We examine the influence of the contour thickness, gap width, and dielectric media filled inside the hollows on the antenna resonance conditions. Through these simulations, we show that it is possible to tune an antenna with a constant length over a broad spectral range (ranging in ultraviolet–visible, visible light, and infrared light).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aksu S, Yanik AA, Adato R, Artar A, Huang M, Altug H (2010) High-throughput nanofabrication of plasmonic infrared nanoantenna arrays for vibrational nanospectroscopy. Nano Lett 10:2511–2518

    Article  CAS  Google Scholar 

  2. Sederberg S, Elezzabi AY (2011) Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt Express 19:15532–15537

    Article  CAS  Google Scholar 

  3. Wang L, Xu X (2007) High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl Phys Lett 90:261105–261107

    Article  Google Scholar 

  4. Joshi BP, Wei QH (2008) Cavity resonances of metal-dielectric-metal nanoantennas. Opt Express 16:10315–10322

    Article  Google Scholar 

  5. Neubrech F, Pucci A, Cornelius TW, Karim S, Garcia-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in tailored nanoantenna for infrared detection. Phys Rev Lett 101:157403

    Article  Google Scholar 

  6. Chau YF, Yeh HH, Tsai DP (2010) A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J Electromagn Waves Appl 24:1621–1632

    Article  Google Scholar 

  7. Chau YF, Yeh HH, Tsai DP (2010) Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J Electromagn Waves Appl 24:1005–1014

    Article  Google Scholar 

  8. Chau YF, Yeh HH (2011) A comparative study of solid-silver and silver-shell nanodimers on surface Plasmon resonances. J Nanopart Res 13:637–644

    Article  CAS  Google Scholar 

  9. Wang L, Cai L, Zhang J, Bai W, Hu H, Song G (2011) Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 42:1263–1266

    Article  CAS  Google Scholar 

  10. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 4(12):4370–4379

    Article  Google Scholar 

  11. Gresho PM, Sani RL (2000) Incompressible flow and finite element method, vol 1 and 2. Wiley, New York

    Google Scholar 

  12. Monk P (2003) Finite element methods for Maxwell’s equations. Clarendon, Oxford, p 85

    Book  Google Scholar 

  13. Okamoto T, Kawata S (eds) (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin, p 99

    Google Scholar 

  14. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  15. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934

    Article  CAS  Google Scholar 

  16. Xu HX (2005) Comment on “Theoretical study of single molecule fluorescence in a metallic nanocavity”. Appl Phys Lett 87:066101

    Article  Google Scholar 

  17. Li ZP, Yang ZL, Xu HX (2006) Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”. Phys Rev Lett 97:079701

    Article  Google Scholar 

  18. Lin YZ, Hong LQ, Xiong R, Peng LZ, Bin R, Xing XH, Qun TZ (2010) FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chinese Sci Bull 55:2635–2642

    Article  Google Scholar 

  19. Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  Google Scholar 

  20. Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  CAS  Google Scholar 

  21. Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface enhancement Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443

    Article  CAS  Google Scholar 

  22. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  23. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403

    Article  Google Scholar 

  24. Chau YF (2009) Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics 4:253–259

    Article  CAS  Google Scholar 

  25. Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6:581–589

    Article  CAS  Google Scholar 

  26. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Tunable plasmonic nanostructures: from fundamental nanoscale optics to surface-enhanced spectroscopies. Acc Chem Res 40:53–62

    Article  Google Scholar 

  27. Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Phys Status Solidi-Rapid Res Lett 3:136–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.-F. Chau acknowledges the financial support from the National Science Council of the Republic of China (Taiwan) under Contracts NSC 99-2112-M-231-001-MY3, NSC 101-3113-P-002-021-, and NSC-100-2632-E-231-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, YF., Lin, WH., Sung, MJ. et al. Numerical Investagation of a Castle-like Contour Plasmonic Nanoantenna with Operating Wavelengths Ranging in Ultraviolet–Visible, Visible Light, and Infrared Light. Plasmonics 8, 755–761 (2013). https://doi.org/10.1007/s11468-012-9469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9469-7

Keywords

Navigation