Skip to main content
Log in

Mesoporous carbon with large pores as anode for Na-ion batteries

  • Article
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Sodium ion (Na+) batteries have attracted increased attention for energy storage owing to the natural abundance and low cost of sodium. Herein, we report the synthesis of mesoporous carbon with large pores as anode for Na-ion batteries. The mesoporous carbon was obtained by carbonization and dense packing of 50 nm resorcinol and formaldehyde spheres synthesized through an extension Stöber method. Our work demonstrates that replacement of lithium by sodium using large pore carbon as anode might offer an alternative route for rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slater MD, Kim D, Lee HE et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  2. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  3. Sun YK, Chen ZH, Noh HJ et al (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947

    Article  Google Scholar 

  4. Tang K, Fu LJ, White RJ et al (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877

    Article  Google Scholar 

  5. Wenzel S, Hara T, Janek J et al (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342–3345

    Article  Google Scholar 

  6. Cao YL, Xiao LF, Sushko ML et al (2013) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  Google Scholar 

  7. Alcantara R, Lavela P, Ortiz GF et al (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225

    Article  Google Scholar 

  8. Fang Y, Gu D, Zou Y et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991

    Article  Google Scholar 

  9. Lu AH, Li WC, Hao GP et al (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Ed 49:1615–1618

    Article  Google Scholar 

  10. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  Google Scholar 

  11. Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  Google Scholar 

  12. Liu J, Qiao SZ, Liu H et al (2011) Extension of the Stober method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  Google Scholar 

  13. Lu AH, Hao GP, Sun Q (2011) Can carbon spheres be created through the Stober method? Angew Chem Int Ed 50:9023–9025

    Article  Google Scholar 

  14. Choma J, Jamiola D, Augustynek K et al (2012) New opportunities in Stober synthesis: preparation of microporous and mesoporous carbon spheres. J Mater Chem 22:12636–12642

    Article  Google Scholar 

  15. Li N, Zhang Q, Liu J et al (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun 49:5135–5137

    Article  Google Scholar 

  16. Yang TY, Liu J, Zheng Y et al (2013) Facile fabrication of core–shell structured Ag@Carbon and mesoporous yolk–shell structured Ag@Carbon@Silica by an extended Stöber method. Chem Eur J 19:6942–6945

    Article  Google Scholar 

  17. Su FB, Poh CK, Chen JS et al (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724

    Article  Google Scholar 

  18. Liu J, Yang TY, Wang DW et al (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798

    Google Scholar 

  19. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    Article  Google Scholar 

  20. Tang J, Zhou XF, Zhao DY et al (2007) Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. J Am Chem Soc 129:9044–9048

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) Discovery Project Program. Jian Liu gratefully acknowledges the award of UQ Foundation Research Excellence Awards and a UQ Early-Career-Research Grant. Hao Liu would like to thank the support from UTS Chancellor’s Post Doctoral Fellowship (CPDF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Hao Liu.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Liu, J., Liu, H., Yang, T. et al. Mesoporous carbon with large pores as anode for Na-ion batteries. Chin. Sci. Bull. 59, 2186–2190 (2014). https://doi.org/10.1007/s11434-014-0164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0164-2

Keywords

Navigation