Skip to main content
Log in

Spatial distribution of sediments and transfer properties in soils in a stormwater infiltration basin

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of our study was to characterise the heterogeneity of sediment distribution in a stormwater retention/infiltration basin (Pont de Cheviré, Nantes, France) and to determine the impact of this distribution on water transfer properties in the soil.

Materials and methods

Soil water retention curves and saturated hydraulic conductivity (K s) measurements were made at 11 points in the basin.

Results and discussion

A highly heterogeneous organic matter (OM) distribution ranging from 45 to 222 g kg−1 was observed in the surface layer (layer A), with a sediment thickness ranging from 5 to 26 cm. The sediment thickness of the underlying layer, primarily made up of sand (layer S), ranged from 7 to 32 g kg−1. We observed a significant influence of OM and fine mineral particles on the soil pore distribution and a negative correlation with the saturated hydraulic conductivity (values between 1.3e−5 and 7.2e−6 m s−1 in layer A and close to 3e−4 m s−1 in layer S).

Conclusions

This study allowed define the soil physical parameters that account for the clogging phenomenon in this infiltration basin. Nevertheless, this study raises questions as to the contribution of clay in the mineralogical sense on the one hand and OM dynamics on transfer properties and the clogging phenomenon on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badin A-L, Faure P, Bedell J-P, Delolme C (2008) Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size. Sci Total Environ 403:178–187

    Article  CAS  Google Scholar 

  • Badin A-L, Mederel G, Bechet B, Borschneck D, Delolme C (2009) Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma 153:163–171

    Article  CAS  Google Scholar 

  • Barraud S, Dechesne M, Bardin J, Varnier J (2005) Statistical analysis of pollution in stormwater infiltration basins. Water Sci Technol 51:1–9

    Article  CAS  Google Scholar 

  • Béchet B, Durin B, Lassabatère L, Ruban V, Legret M (2007) Rôle des bassins de rétention–infiltration dans l'épuration des eaux de ruissellement péri-urbaines. Récent Prog en Génie des Procédés 96:1–8

    Google Scholar 

  • Blake GR, Hartge KH (1986) Particle density. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, pp 381–382

    Google Scholar 

  • Bouwer H (1969) Theory of seepage from open channels. In: Press A (ed) Adv. in Hydrosciences. New York, pp 121–170

  • Braga A, Horst M, Traver RG (2007) Temperature effects on the infiltration rate through an infiltration basin BMP. J Irrig Drain Eng 133:593–601

    Article  Google Scholar 

  • Campbell CA (1978) Soil organic carbon, nitrogen and fertility. In: Schnitzer M, Khan SU (eds) Soil organic matter. Elsevier, Amsterdam, pp 173–271

    Chapter  Google Scholar 

  • Chocat B, Ashley R, Marsalek J, Matos MR, Rauch W, Schilling W, Urbonas B (2007) Towards the sustainable management of urban storm-water. Indoor Built Environ 16:273–285

    Article  Google Scholar 

  • Datry T, Malard F, Vitry L, Hervant F, Gibert J (2003) Solute dynamics in the bed sediments of a stormwater infiltration basin. J Hydrol 273:217–233

    Article  CAS  Google Scholar 

  • De Boodt M, Verdonck O, Cappaert I (1974) Method for measuring the water-release curve of organic substrates. Acta Hortic 37:2054–2062

    Google Scholar 

  • Dechesne M, Barraud S, Bardin JP (2004) Indicators for hydraulic and pollution retention assessment of stormwater infiltration basins. J Environ Manage 71:371–380

    Article  Google Scholar 

  • Delmas-Gadras C (2000) Influence des conditions physico-chimiques sur la mobilité du plomb et du zinc dans un sol et un sédiment routier, Thesis. Pau and Pays de l'Adour University, Pau, France

  • Dexter AR (2004) Soil physical quality—Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201–214

    Article  Google Scholar 

  • Dexter AR, Bird NRA (2001) Methods for predicting the optimum and the range of water contents for tillage based on the water retention curve. Soil Till Res 57:203–212

    Article  Google Scholar 

  • Durand C, Ruban V, Amblès A (2005) Characterisation of complex organic matter present in contaminated sediments from water retention ponds. J Anal Appl Pyrol 73:17–28

    Article  CAS  Google Scholar 

  • Durin B (2006) Transfert et transport colloïdal de polluants métalliques: applications en assainissement routier. Nantes University, Nantes, p 394

    Google Scholar 

  • Durin B, Béchet B, Legret M, Le Cloirec P (2007) Role of colloids in heavy metal transfer through a retention–infiltration basin. Water Sci Technol 56:91–99

    Article  CAS  Google Scholar 

  • Gonzalez-Sosa E, Braud I, Dehotin J, Lassabatère L, Angulo-Jaramillo R, Lagouy M, Branger F, Jacqueminet C, Kermadi S, Michel K (2010) Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol Process (in press)

  • Hamza M, Anderson WK (2005) Soil compaction in cropping systems—a review of the nature, causes and possible solutions. Soil Till Res 82:121–145

    Article  Google Scholar 

  • Ishizaki K, Imbe M, Ni G, Takeshima M (1996) Background of rainwater infiltration technology. 7th International Conference on Urban Storm Drainage, Hannover, Germany, pp 377–382

  • Lassabatere L, Angulo-Jaramillo R, Ugalde JMS, Cuenca R, Braud I, Haverkamp R (2006) Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci Soc Am J 70:521–532

    Article  CAS  Google Scholar 

  • Lassabatere L, Angulo-Jaramillo R, Soria Ugalde JM, Simunek J, Haverkamp R (2009) Analytical and numerical modeling of water infiltration experiments. Water Resour Res 45:W12415

    Article  Google Scholar 

  • Lassabatere L, Angulo-Jaramillo R, Goutaland D, Letellier L, Gaudet JP, Winiarski T, Delolme C (2010) Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma 156(3–4):316–325

    Article  Google Scholar 

  • Le Coustumer S, Barraud S (2007) Long-term hydraulic and pollution retention performance of infiltration systems 7th International Conference on Urban Drainage Modelling/4th International Conference on Water Sensitive Urban Design, Date: APR 02-07, 2006 Melbourne AUSTRALIA. Water Sci Technol 55:235–243

    Google Scholar 

  • Legret M, Pagotto C (1999) Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ 235:143–150

    Article  CAS  Google Scholar 

  • Legret M, Le Marc C, Demare D, Colandini V (1995) Heavy metal pollution in a detention pond receiving highway run-off. Environ Technol 16:1049–1060

    CAS  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Contribution to Hydrogeology. Verlag Heinz Heise, Hannover

    Google Scholar 

  • Musy A, Soutter M (1991) Physique du sol. Presses Polytechniques et Universitaires Romandes, Lausanne, p 335

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. Methods of soil analysis. Part 3. Chemical methods. Soil Sci Soc Am J, Madison, pp 961–1010

    Google Scholar 

  • Nimmer M, Thompson A, Misra D (2009) Water table mounding beneath stormwater infiltration basins. Environ Eng Geosci 15:67–79

    Article  Google Scholar 

  • Pilgrim W, Schroder B (1997) Multi-media concentrations of heavy metals and major ions from urban and rural sites in New Brunswick, Canada. Environ Monit Assess 47:89–108

    Article  CAS  Google Scholar 

  • Pitt R, Clark S, Field R (1999) Groundwater contamination potential from stormwater infiltration practices. Urban Water 1:217–236

    Article  CAS  Google Scholar 

  • Richards LA (1947) A pressure-membrane apparatus construction and use. Agric Eng 28:451–454

    Google Scholar 

  • Schuh WM (1990) Seasonal variation of clogging of an artificial recharge basin in a northern climate. J Hydrol 121:193–215

    Article  CAS  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Winiarski T, Bedell J-P, Delolme C, Perrodin Y (2006) The impact of stormwater on a soil profile in an infiltration basin. Hydrogeol J 14:1244–1251

    Article  CAS  Google Scholar 

  • Yilmaz D, Lassabatere L, Angulo-Jaramillo R, Legret M (2010) Hydrodynamic characterization of BOF slags through adapted BEST method. Vadoze Zone J 9:107–116

    Article  CAS  Google Scholar 

  • Zhang H (1994) Organic matter incorporation affects mechanical properties of soil aggregates. Soil Tillage Res 31:263–275

    Article  Google Scholar 

  • Zhang RD (1997) Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci Soc Am J 61:1024–1030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the EPHor research unit at Agrocampus Ouest, Centre of Angers. It was conducted within the framework of the regional Polesur Project from 2008 to 2011. The authors would like to thank all of the people who contributed to this work. First, special thanks are in order for the DIR Ouest who gave us permission to work at the Pont de Cheviré infiltration basin. Second, we would like to express our gratitude to Stevens Burgaud for data collection and processing, and to Claudie Mazzega, Yvette Barraud-Roussel and Sylviane Delepine-Bourgeois who were responsible for the laboratory measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Cannavo.

Additional information

Responsible editor: Ying Ouyang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannavo, P., Vidal-Beaudet, L., Béchet, B. et al. Spatial distribution of sediments and transfer properties in soils in a stormwater infiltration basin. J Soils Sediments 10, 1499–1509 (2010). https://doi.org/10.1007/s11368-010-0258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0258-7

Keywords

Navigation