Skip to main content
Log in

Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators

  • WATER USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

In the past decade, several methods have emerged to quantify water scarcity, water availability and the human health impacts of water use. It was recommended that a quantitative comparison of methods should be performed to describe similar impact pathways, namely water scarcity and human health impacts from water deprivation. This is precisely the goal of this paper, which aims to (1) identify the key relevant modeling choices that explain the main differences between characterization models leading to the same impact indicators; (2) quantify the significance of the differences between methods, and (3) discuss the main methodological choices in order to guide method development and harmonization efforts.

Methods

The modeling choices are analysed for similarity of results (using mean relative difference) and model response consistency (through rank correlation coefficient). Uncertainty data associated with the choice of model are provided for each of the models analysed, and an average value is provided as a tool for sensitivity analyses.

Results

The results determined the modeling choices that significantly influence the indicators and should be further analysed and harmonised, such as the regional scale at which the scarcity indicator is calculated, the sources of underlying input data and the function adopted to describe the relationship between modeled scarcity indicators and the original withdrawal-to-availability or consumption-to-availability ratios. The inclusion or exclusion of impacts from domestic user deprivation and the inclusion or exclusion of trade effects both strongly influence human health impacts. At both midpoint and endpoint, the comparison showed that considering reduced water availability due to degradation in water quality, in addition to a reduction in water quantity, greatly influences results. Other choices are less significant in most regions of the world. Maps are provided to identify the regions in which such choices are relevant.

Conclusions

This paper provides useful insights to better understand scarcity, availability and human health impact models for water use and identifies the key relevant modeling choices and differences, making it possible to quantify model uncertainty and the significance of these choices in a specific regional context. Maps of regions where these specific choices are of importance were generated to guide practitioners in identifying locations for sensitivity analyses in water footprint studies. Finally, deconstructing the existing models and highlighting the differences and similarities has helped to determine building blocks to support the development of a consensual method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilar-Manjarrez J (2006) WRI Major watersheds of the world delineation. FAO-Aquaculture Management and Conservation Service

  • Alcamo J, Henrichs T, Rosch T (2000) World water in 2025—global modeling and scenario analysis for the World Commission on Water for the 21st century. Kassel World Water series

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B et al (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48(3):317–337

    Article  Google Scholar 

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B et al (2003b) Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol Sci J 48(3):339–348

    Article  Google Scholar 

  • Bauer C, Zapp P (2005) Towards generic factors for land Use and water consumption. In: Dubreuil A (ed) Life cycle assessment of metals: issues and research directions. SETAC - USA, Pensacola, USA

    Google Scholar 

  • Bayart J-B et al (2010) Framework for assessment of off-stream freshwater use within LCA. Int J Life Cycle Assess 15(5):439

    Article  CAS  Google Scholar 

  • Bayart J-B et al (2014) The Water Impact Index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19(6):1336–1344

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17(1):79–89

    Article  Google Scholar 

  • Boulay A-M, Bouchard C et al (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16(7):639–651

    Article  CAS  Google Scholar 

  • Boulay A-M, Bulle C et al (2011b) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45(20):8948–8957

    Article  CAS  Google Scholar 

  • Bourgault G, Lesage P, Margni M, Bulle C, Boulay A-M, Samson, R (2012) Quantification of uncertainty of characterisation factors due to spatial variability. SETAC Europe 22nd Annual Meeting / 6th SETAC World Congress, Berlin.

  • Brent AC (2004) A life cycle impact assessment procedure with resource groups as areas of protection. Int J Life Cycle Assess 9(3):172–179

    Article  CAS  Google Scholar 

  • Bulle C, Humbert S, Jolliet O, Rosenbaum R, Margni M (2012) IMPACT World+: A new global regionalized life cycle impact assessment method, LCA XII, United States, Washington, Tacoma.

  • Fekete B, Vörösmarty C, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cy 16(3):15.1-15-10

  • Fenner K et al (2005) Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol 39(7):1932–1942

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (nd.) AQUASTAT-FAO’s information system on water and agriculture. Available at: http://www.fao.org/NR/WATER/AQUASTAT/main/index.stm

  • Frischknecht R et al. (2008) Swiss ecological scarcity method: the new version 2006

  • Hertwich EG, McKone TE, Pease WS (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19(6):1193–1204

    CAS  Google Scholar 

  • Hoekstra AY et al (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7(2):e32688. doi:10.1371/journal.pone.0032688

    Article  CAS  Google Scholar 

  • Initiative, U.-S.L.C (2012) http://www.wulca-waterlca.org/

  • ISO 14046 (2014) Water footprint—principles, requirements and guidelines

  • Kounina A et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption. UNESCO-IHE, Delft, The Netherlands

    Google Scholar 

  • Motoshita M, Itsubo N, Inaba A (2010a) Damage assessment of water scarcity for agricultural use 1. In: Proceedings of 9th international conference on EcoBalance. National Institute of Advanced Industrial Science and Technology (AIST), pp 3–6

  • Motoshita M, Itsubo N, Inaba A (2010b) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16(1):65–73

    Article  Google Scholar 

  • Owens JW (2002) Water resources in life-cycle impact assessment: considerations in choosing category indicators. J Ind Ecol 5(2):37–54

    Article  Google Scholar 

  • Perry C (2007) Efficient irrigation; inefficient communication; flawed recommendations. Irrig Drain 56:367–378

    Article  Google Scholar 

  • Pfister S, Bayer P (2013) Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J Clean Prod. Available at: http://www.ifu.ethz.ch/ESD/downloads/reports/Monthly_WSI_LCA_FOOD.pdf

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104

    Article  CAS  Google Scholar 

  • Pfister S, Hellweg S (2011) Surface water use – human health impacts. Report of the LC-IMPACT project (EC: FP7) (p. http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_w). Retrieved from http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_water_LCIA.pdf

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113–120

    Article  Google Scholar 

  • Ridoutt BG, Pfister S (2013) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204–207

    Article  CAS  Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rosenbaum R et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the 21st century. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • UNEP Global Environment Monitoring System (GEMS) Water programme (2009) GEMStat

  • Vorosmarty CJ et al (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of Francis Gassert from the World Resource Institute (WRI) for providing data and understanding into the Aquaduct model. We acknowledge the financial support of the industrial partners in the International Chair in Life Cycle Assessment (a research unit of CIRAIG): ArcelorMittal, Bombardier, le Mouvement Desjardins, Hydro-Québec, LVMH, Michelin, Nestlé, RECYC-QUÉBEC, RONA, SAQ, Solvay, Total, Umicore, Veolia Environnement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Boulay.

Additional information

Responsible editor: Annette Koehler

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulay, AM., Motoshita, M., Pfister, S. et al. Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. Int J Life Cycle Assess 20, 139–160 (2015). https://doi.org/10.1007/s11367-014-0814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0814-2

Keywords

Navigation