Skip to main content
Log in

The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment

  • LIFE CYCLE SUSTAINABILITY ASSESSMENT
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

In life cycle assessment (LCA), resource availability is currently evaluated by means of models based on depletion time, surplus energy, etc. Economic aspects influencing the security of supply and affecting availability of resources for human use are neglected. The aim of this work is the development of a new model for the assessment of resource provision capability from an economic angle, complementing existing LCA models. The inclusion of criteria affecting the economic system enables an identification of potential supply risks associated with resource use. In step with actual practice, such an assessment provides added value compared to conventional (environmental) resource assessment within LCA. Analysis of resource availability including economic information is of major importance to sustain industrial production.

Methods

New impact categories and characterization models are developed for the assessment of economic resource availability based on existing LCA methodology and terminology. A single score result can be calculated providing information about the economic resource scarcity potential (ESP) of different resources. Based on a life cycle perspective, the supply risk associated with resource use can be assessed, and bottlenecks within the supply chain can be identified. The analysis can be conducted in connection with existing LCA procedures and in line with current resource assessment practice and facilitates easy implementation on an organizational level.

Results and discussion

A portfolio of 17 metals is assessed based on different impact categories. Different impact factors are calculated, enabling identification of high-risk metals. Furthermore, a comparison of ESP and abiotic depletion potential (ADP) is conducted. Availability of resources differs significantly when economic aspects are taken into account in addition to geologic availability. Resources assumed uncritical based on ADP results, such as rare earths, turn out to be associated with high supply risks.

Conclusions

The model developed in this work allows for a more realistic assessment of resource availability beyond geologic finiteness. The new impact categories provide organizations with a practical measure to identify supply risks associated with resources. The assessment delivers a basis for developing appropriate mitigation measures and for increasing resilience towards supply disruptions. By including an economic dimension into resource availability assessment, a contribution towards life cycle sustainability assessment (LCSA) is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwerde M (2009a) Rohstoffe für Zukunftstechnologien. ISI-Schriftenreihe “Innovationspotenziale”. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Angerer G, Marscheider-Weidemann F, Wendl M, Witschel M (2009b) Lithium für Zukunftstechnologien. Fraunhofer ISI, Karlsruhe

    Google Scholar 

  • BDI (2010) Übersicht über besthende Handels- und Wettbewerbsverzerrungen auf den Rohstoffmärkten. Bundesverband der Deutschen Industrie e.V, Berlin

    Google Scholar 

  • BGR (2007) Rohstoffwirtschaftliche Steckbriefe für Metall- und Nichtmetallrohstoffe. Bundestanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • BUWAL (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit - Ökofaktoren 1997. Schriftenreihe Umwelt, Nr. 297 - Ökobilanzen. Federal Office for Environment Forest and Landscape, Bern

    Google Scholar 

  • CIA (2012) The world factbook. Central Intelligence Agency

  • CML (2013) CML - IA 4, 2nd edn. Institut of Environmental Sciences Leiden University, Leiden

    Google Scholar 

  • Defra (2012) A review of national resource strategies and research. Department for Environment, Food and Rural Affairs, London

    Google Scholar 

  • DOJ, FDT (2010) Horizontal merger guidelines §5.2. The United States Department of Justice and the Federal Trade Commission, Washington DC

    Google Scholar 

  • Erdmann L, Behrendt S (2010) Kritische Rohstoffe für Deutschland. Institut für Zukunftsstudien und Technologiebewertung (IZT), Berlin

    Google Scholar 

  • Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45(18):7620–7630

    Article  CAS  Google Scholar 

  • European Commission (2010a) Critical raw materials for the EU. Report of the Ad-hoc Working Group on defining critical raw materials

  • European Commission (2010b) International Reference Life Cycle Data System (ILCD) handbook—framework and requirements for life cycle impact assessment models and indicators. EUR 24709 EN. Luxembourg

  • European Commission (2011) International Reference Life Cycle Data System (ILCD) handbook—recommendations for life cycle impact assessment in the European context. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • European Commission (2013) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations

  • Finkbeiner M (ed) (2011) Toward life cycle sustainability management. Springer Science + Business Media, Berlin

    Google Scholar 

  • Finnveden G (2005) The resource debate needs to continue. Int J Life Cycle Assess 10(5):372

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Env Mgmt 91:1–21

    Article  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method: Eco-Factors 2006—a method for impact assessment in LCA. Environmental studies no. 0906. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • GHGm (2008) Social and environmental responsibility in metals supply to the electronic industry. GreenhouseGasMeasurement.com (GHGm), Guelph, Canada

  • Goedkoop M, Spriensma R (2001) The eco-indicator 99—a damage oriented method for life cycle impact assessment, vol 3. PRé Consultants B.V, Amersfoort

    Google Scholar 

  • Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christofferson L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warrne S, Yang M-y, Zhu C (2012a) Methodology of metal criticality determination. Environ Sci Technol 46:1063–1070

    Article  CAS  Google Scholar 

  • Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christofferson L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warrne S, Yang M-y, Zhu C (2012b) Methodology of metal criticality determination—supporting information

  • Graedel TE, Erdmann L (2012) Will material scarcity impede routine industrial use? MRS Bull 37:325–331

    Article  Google Scholar 

  • Guinée JB (ed) (2002) Handbook on life cycle assessment—operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hagelüken C, Meskers CEM (2010) Complex life cycles of precious and special metals. In: Graedel TE, Voet E (eds) Linkages of sustainability. MIT Press, Cambridge, pp 163–197

    Google Scholar 

  • Hauschild M, Wenzel H (1998) Environmental assessment of products. Chapman & Hall, New York

    Google Scholar 

  • Hischier R, Weidema B (2010) Implementation of life cycle impact assessment methods. ecoinvent report no. 3. ecoinvent centre, St. Gallen

  • INSG (2012) International Nickel Study Group. www.insg.org

  • ISO (2006a) Environmental management—life cycle assessment—principles and framework. ISO 14040:2006. European Committee for Standardisation, Brussels

    Google Scholar 

  • ISO (2006b) Environmental management—life cycle assessment—requirements and guidelines. ISO 14044:2006. European Committee for Standardisation, Brussels

    Google Scholar 

  • Kerkow U, Martens J, Müller A (2012) Vom Erz zum Auto - Abbaubedingungen und Lieferketten im Rohstoffsektor und die Verantwortung der deutschen Automobilindustrie. MISEREOR e.V., “Brot für die Welt”. Global Policy Forum, Aachen

    Google Scholar 

  • Klinglmair M, Sala S, Brandao M (2013) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess, published online

  • Müller-Wenk R (1978) Die ökologische Buchhaltung: Ein Informations- und Steuerungsinstrument für umweltkonforme Unternehmenspolitik. Campus Verlag, Frankfurt

    Google Scholar 

  • Nassar NT, Barr R, Browning M, Diao Z, Fiedlander E, Harper EB, Henly C, Kavlak G, Kwatra S, Jun C, Warren S, Yang M-Y, Graedel TE (2012) Criticality of the geological copper family. Environ Sci Technol 46(2):1071–1078

    Article  CAS  Google Scholar 

  • National Research Council (2008) Minerals, critical minerals, and the U.S. economy. National Academies Press, Washington, DC

    Google Scholar 

  • OECD (2009) Workshop on raw materials. Paris

  • OECD (2010) The economic impact of export restrictions on raw materials. OECD Trade Policy Studies. OECD Publishing, Paris

    Book  Google Scholar 

  • Oryx Stainless (2012) Key raw materials nickel, chrome and iron: Limited availability despite sufficient geological reserves. Oryx Stainless Group, Mühlheim an der Ruhr/Dordrecht

  • PE International (2012) GaBi 5 software-system and database for life cycle engineering. Stuttgart, Echterdingen

  • POLINARES Consortium (2012) Fact sheet: copper. POLINARES working paper n. 40

  • Reuter MA, Heiskanen K, Boin U, Schaik A, Verhoef E, Yang Y, Georgalli G (2005) The metrics of material and metal ecology. Developments in mineral processing 16. Elsevier, Amsterdam

    Google Scholar 

  • Rosenau-Tornow D, Buchholz P, Riemann A, Wagner M (2009) Assessing the long-term supply risks for mineral raw materials—a combined evaluation of past and future trends. Resour Policy 34:161–175

    Article  Google Scholar 

  • Sala S (2012) Assessing resource depletion in LCA: a review of methods and methodological issues. In: Mancini L, De Camillis C, Pennington D (eds) Security of supply and scarcity or raw materials. Towards a methodological framework for sustainability assessment. European Commission, Joint Research Center, Institute for Environment and Sustainability. Publication Office of the European Union, Luxemburg, pp 24–27

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011a) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16(9):929–936

    Article  Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011b) Economic material availability as a new area of protection for life cycle sustainability assessment. Paper presented at the SETAC Europe 21st Annual Meeting, Milano, 15–19 May

  • Schneider L, Berger M, Finkbeiner M (2013) Measuring resources scarcity—limited availability despite sufficient reserves. In: Mancini L, DeCamillis C, Pennington D (eds) Security of supply and scarcity or raw materials. Towards a methodological framework for sustainability assessment. European Commission, Joint Research Center, Institute for Environment and Sustainability. Publications Office of the European Union, Luxemburg, pp 32–34

    Google Scholar 

  • Steen BA (2006) Abiotic resource depletion—different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11(1):49–54

    Article  Google Scholar 

  • Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use, a focus on resource functionality. Int J Life Cycle Assess 10(4):240–247

    Article  Google Scholar 

  • The World Bank Group (2012) Worldwide governance indicators

  • Tsurukawa N, Prakash S, Manhart A (2011) Social impact of artisanal cobalt mining in Katanga, Democratic Republic of Congo. Öko-Institut e.V, Freiburg

    Google Scholar 

  • Udo de Haes HA, Jolliet O, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Klöpffer W, Krewitt W, Lindeijer EW, Mueller-Wenk R, Olson SI, Pennington DW, Potting J, Steen B (2002) Life cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry, Pensacola

  • UNCTAD (2012) Iron ore production and trade set new records in 2011. United Nations Conference on Trade and Development, Geneva

    Google Scholar 

  • UNDP (2011) Human development report 2011—sustainability and equity: a better future for all. New York

  • UNEP (2009a) Critical metals for future sustainable technologies and their recycling potential. Sustainable innovation and technology transfer industrial sector studies. United Nations Environment Programme and Öko-Institut e.V., Paris, Darmstadt

  • UNEP (2009b) Guidelines of social life cycle assessment. UNEP/SETAC Life Cycle Initiative at UNEP, CIRAIG, FAQDD and the Belgium Federal Public Planning Service Sustainable Development, Paris

  • UNEP (2010) Assessing the environmental impacts of consumption and production; priority products and materials. A Report of the Working Group on the Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management. Hertwich E, van der Voet E, Suh S, Tukker A, Huijbregts M, Kazmierczyk P, Lenzen M, McNeely J, Moriguchi Y, Paris

  • UNEP (2011) Recycling rates of metals—a status report. United Nations Environmental Programme, International Resources Panel, Paris

    Google Scholar 

  • USGS (2005) Minerals yearbook. Volume I, metals and minerals. United States Geological Survey, Reston

    Google Scholar 

  • USGS (2013) Mineral commodity summaries 2013. U.S. Geological Survey, Department of the Interior, Reston

    Google Scholar 

  • van Oers L, deKoning A, Guinée J, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute, Leiden

    Google Scholar 

  • VDI (2013) http://www.vdi.de/technik/fachthemen/energie-und-umwelt/fachbereiche/ressourcenmanagement/themen/richtlinienwerk-zur-ressourceneffizienz-zre/ . Accessed 22 Apr 2013

  • von der Lippe P (1993) Deskriptive Statistik. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Weidema B, Finnveden G, Stewart M (2005) Impacts from resource use—a common position paper. Int J Life Cycle Assess 10(6):382

    Article  Google Scholar 

  • Yellishetty M, Mudd GM, Ranjith PG (2011) The steel industry, abiotic resource depletion and life cycle assessment: a real or perceived issue? J Clean Prod 19:78–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Schneider.

Additional information

Responsible editor: Adisa Azapagic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, L., Berger, M., Schüler-Hainsch, E. et al. The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. Int J Life Cycle Assess 19, 601–610 (2014). https://doi.org/10.1007/s11367-013-0666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-013-0666-1

Keywords

Navigation