Skip to main content
Log in

Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study explores the innocuous, biocompatible, and extremely competent molecularly imprinted chitosan/RTIL electrospun nanofibers having average diameter of 30 nm for the expulsion of thorium (IV) ions from the mimicked effluent waste. The extended Flory–Huggins theory and three-dimensional molecular modeling have been effectively premeditated via Materials Studio software for enumerating the inter-miscibility and compatibility (Chi parameter (χ) = 1.019, mixing energy (Emix) = 0.603 kcal/mol) of the chitosan/RTIL (1-butyl-3-methylimidazolium tetrafluoroborate). The maximum adsorption efficiency is found to be 90% at a neutral pH of 7, and a temperature of 298 K within 120 min. The adsorption process was extensively studied by two-parameter adsorption isotherms like Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) and three-parameter models like Redlich–Paterson and Sips isotherm. Pseudo-second-order kinetics model (R2 = 0.982) and Langmuir isotherm (R2 = 0.994) bestowed the best fitting on chitosan/RTIL nanofibers for the adsorption of Th (IV) ions. The thermodynamic study reveals the spontaneity and exothermic nature of the reaction. The experimental analysis conjoint with isotherm and kinetic models, and simulation study establish the applicability of chitosan/RTIL nanofibers for the expulsion of Th (IV) and other toxic metal ions from the effluents.

Ion-imprinted electrospun nanofiber for expulsion of thorium (IV) ion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    Article  CAS  Google Scholar 

  • Ahmadi A, Freire JJ (2009) Prediction of polymer mixture compatibility by Monte Carlo simulation of intermolecular binary interactions. Polymer 50:3871–3876

    Article  CAS  Google Scholar 

  • Bingjie L, Dongfeng W, Haiyan L, Ying X, Zhang L (2011) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As (III) as imprinted ions. Desalination 272:286–292

    Article  Google Scholar 

  • Chaurasia SK, Singh RK (2014) Crystallization behaviour of a polymeric membrane based on the polymer PVdF–HFP and the ionic liquid BMIMBF4. RSC Adv 4:50914–50924

    Google Scholar 

  • Chenyang X, Jipeng G, Yongjin L, Jingye L (2014) Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. ACS Appl Mater Interfaces 6:4447–4457

    Article  Google Scholar 

  • Dhillon A, Kumar D (2015) Development of a nanoporous adsorbent for the removal of health-hazardous fluoride ions from aqueous systems. J Mater Chem A 3:4215–4228

    Article  CAS  Google Scholar 

  • Djeribi R, Hamdaoui O (2008) Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112

    Article  CAS  Google Scholar 

  • Ebru B, Sibel B, Arzu E, Adil D, Ridvan S (2006) Selective separation of thorium using ion imprinted chitosan-phthalate particles via solid phase extraction. Sep Sci Technol 41:3109–3121

    Article  Google Scholar 

  • Findeiß MJ, Schäffer A et al (2017) Fate and environmental impact of thorium residues during rare earth processing. J Sustain Metall 3:179–189

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46

    Article  CAS  Google Scholar 

  • Gonte RR, Kandasubramanian B (2012) Chemically modified polymer beads for sorption of gold from waste gold solution. J Hazard Mater 217:447–451

    Article  Google Scholar 

  • Gonte RR, Balasubramanian K, Mumbrekar JD (2013) Porous and cross-linked cellulose beads for toxic metal ion removal: Hg(II) ions. J Polym 31:1–9

    Google Scholar 

  • Gonte R, Balasubramanian K, Deb PC, Singh P (2012) Synthesis and Characterization of Mesoporous Hypercrosslinked Poly (Styrene Co- Maleic Anhydride) Microspheres. Int J Polym Mater Polym Biomater. 61:919–930

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1996) Pore and solid diffusion kinetics in fixed bed adsorption under constant-pattern condition. Ind Eng Chem Fundam 5:212–223

    Article  Google Scholar 

  • He J, Lu Y, Luo G (2014) Ca(II) imprinted chitosan microsphere: an effective and green adsorbent for the removal of Cu(II), Cd(II), and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1998) The kinetics of sorption of divalent metal ions on to sphagnummoss peat. Water Res 34:738–742

    Google Scholar 

  • Ho YS, Mckay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorpt Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  • Hudlikar M, Balasubramanian K, Kodam K (2014) Towards the Enhancement of Antimicrobial Efficacy and Hydrophobization of Chitosan. Journal of Chitin and Chitosan Science. 2:1–7.

  • Jawalkar SS, Adoor SG, Sairam M, Nadagouda MN, Aminabhavi TM (2005). Molecular Modelling on the Binary Blend Compatibility of Poly(vinylalcohol) and Poly(methyl methacrylate): An Atomistic Simulation and Thermodynamic Approach. J Phys Chem B. 109(32):15611–15620

  • Kumar KV, Castro MM, Escandell MM, Sabio MM, Reinoso FR (2010) A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces. J Phys Chem C 114:13759–13765

    Article  CAS  Google Scholar 

  • Kumar AS, Gupta T, Kakan SS, Kalidhasan S, Rajesh V, Rajesh N (2012) Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. J Hazard Mater 239:213–224

    Article  Google Scholar 

  • Kundu S, Gupta AK (2006) Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  • Liu B, Wang D, Li H, Xu Y, Zhang L (2011a) As (III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 272:286–292

    Article  CAS  Google Scholar 

  • Liu H, Yang F, Heng Y, Kang J, Qu J, Chen JP (2011b) Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res 45:145–154

    Article  CAS  Google Scholar 

  • Luo Z, Jiang J (2010) Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly (ethylene oxide)/ poly(vinyl chloride) blends. Polymer 51:291–299

    Article  CAS  Google Scholar 

  • Mason JA, Veenstrab M, Long JR (2014) Evaluating metal–organic frameworks for natural gas storage. Chem Sci 5:32–51

    Article  CAS  Google Scholar 

  • Matishov GG, Ilyin GV et al (2017) The effect of radioactive waste storage in Andreev Bay on contamination of the Barents Sea ecosystem. Dokl Earth Sci 472:220–225

    Article  CAS  Google Scholar 

  • Mekonnen T, Mussone P, Khalilb H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem 1:13379–13398

    Article  CAS  Google Scholar 

  • Mohapatra M, Anand S (2007) Studies on sorption of cd(II) on Tata chromite mine overburden. J Hazard Mater 148(3):553–565

    Article  CAS  Google Scholar 

  • Mu D, Li JQ, Zhou YH (2011) Modeling and analysis of the compatibility of polystyrene/poly(methyl methacrylate) blends with four inducing effects. J Mol Model 17:607–619

    Article  CAS  Google Scholar 

  • Mudiam MKR, Chauhan A, Singh KP, Gupta SK, Jain R, Ch R, Murthy RC (2013) Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid–liquid microextraction. Anal Bioanal Chem 405:341–349

    Article  CAS  Google Scholar 

  • Parola AJ, Lima JC, Lodeiro C, Pina F (2008) Water-soluble fluorescent chemosensors: in tune with protons. In: Berberan-Santos MN (eds) Fluorescence of supermolecules, polymers, and nanosystems. Springer Series on Fluorescence, vol 4. Springer, Berlin, Heidelberg

  • Qiang L, Haijia S, Jia L, Tianwei T (2007) Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochem 42:379–383

    Article  Google Scholar 

  • Qiu L, Xiao H (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  • Ran D, Yuzhi W, Lin D, Shuhua D, Meidong H, Shan Y, Min Z (2013) The synthesis of molecular imprinted chitosan-gels copolymerized with multiform functional monomers at three different temperatures and the recognition for the template ovalbumin. Analyst 138:3433–3443

    Article  Google Scholar 

  • Ren H, Zhang Q, Chen X, Zhao W, Zhang J, Zhang H, Zeng R, Xu S (2007) A molecular simulation study of a series of cyclohexanone formaldehyde resins: properties and applications in plastic printing. Polymer 48:887–893

    Article  CAS  Google Scholar 

  • Roosen J, Spooren J, Binnemans K (2014) Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. J Mater Chem A 2:19415–19426

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011

    Article  CAS  Google Scholar 

  • Schiffman JD, Schauer CL (2007a) One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules 8:2665–2667

    Article  CAS  Google Scholar 

  • Schiffman JD, Schauer CL (2007b) Cross-linking chitosan nanofibers. Biomacromolecules 8:594–601

    Article  CAS  Google Scholar 

  • Shafey EIE (2010) Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J Hazard Mater 175:319–327

    Article  Google Scholar 

  • Singh, N, Kandasubramanian B (2014)An effective technique for removal and recovery of Uranium (VI) from aqueous solution using cellulose camphor soot nanofibers. RSC Adv. 4, 27691

  • Site DA (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30(1):187–439

    Article  Google Scholar 

  • Soheil Z, Mansoor K, Toraj M (2014) Cu(II) removal enhancement from aqueous solutions using Ion-imprinted membrane technique. Chem Pap 68:809–815

    Google Scholar 

  • Summers RS, Fuchs F, Sontheimer H (1988) The fate and removal of radioactive iodine in the aquatic environment. ACS, Washington DC, pp 623–636

    Google Scholar 

  • Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym 39:862–890

    Article  CAS  Google Scholar 

  • Talebi M, Abbasizadeh S, Reza A (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2017.04.013

  • Tang X, Niu D, Bi C, Shen B (2013) Hg2+ adsorption from a low-concentration aqueous solution on chitosan beads modified by combining polyamination with Hg2+-imprinted technologies. Ind Eng Chem Res 52:13120–13127

    Article  CAS  Google Scholar 

  • Tella AC, Owalude SO, Ojekanmia CA, Oluwafemi OS (2014) Synthesis of copper–isonicotinate metal–organic frameworks simply by mixing solid reactants and investigation of their adsorptive properties for the removal of the fluorescein dye. New J Chem 38:4494–4500

    Article  CAS  Google Scholar 

  • Walter J, Weber Jr, Paul M, McGinley Lynn EK (1992) A distributed reactivity model for sorption by soils and sediments. Conceptual basis and equilibrium assessments 1. Environ Sci Technol. 26(10):1955–1962

  • Wang F, Lack A, Xie Z, Frübing P, Taubert A, Gerhard R (2012) Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films. Appl Phys Lett 100:062903

    Article  Google Scholar 

  • Webber TW, Chakkravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238

    Article  Google Scholar 

  • Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401

    Article  CAS  Google Scholar 

  • William JL, Lindesen DC (1957) Removal of radioactive contaminants from water by ion exchange slurry. Ind Eng Chem 49:1725–1726

    Article  Google Scholar 

  • Xing C, Guan J, Li Y, Li J (2014) Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. ACS Appl Mater Interfaces 6:4447–4457

    Article  CAS  Google Scholar 

  • Yadav JS, Reddy BVS, Basak AK, Narsaiah AV (2003) Three-component coupling reactions in ionic liquids: an improved protocol for the synthesis of 1,4-dihydropyridines. Green Chem 5:60–63

    Article  CAS  Google Scholar 

  • Zheng H, Liu D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Crbentonite. J Hazard Mater. 167(1–3):141–147

Download references

Acknowledgments

The authors are thankful to Dr. Surendra Pal, Vice-Chancellor, DIAT-DU, for the continuous support, and DRDO-DIAT Program on Nanomaterials for the financial support. The authors would also like to thank Dr. T. Mukundan (NPOL, DRDO Cochin) for the support of Materials Studio software, and Mr. Dhananjay Gunjal for the technical help with morphological characterizations. The authors would also like to thank Mr. Ramdayal, Deakin University, Australia, for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Responsible editor: Georg Steinhauser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gore, P.M., Khurana, L., Siddique, S. et al. Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. Environ Sci Pollut Res 25, 3320–3334 (2018). https://doi.org/10.1007/s11356-017-0618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0618-6

Keywords

Navigation