Skip to main content

Advertisement

Log in

Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antikainen R, Lemola R, Nousiainen JI, Sokka L, Esala M, Huhtanen P, Rekolainen S (2005) Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agric Ecosyst Environ 107:287–305. doi:10.1016/j.agee.2004.10.025

    Article  CAS  Google Scholar 

  • Baker LA (2011) Can urban P conservation help to prevent the brown devolution? Chemosphere 84:779–784. doi:10.1016/j.chemosphere.2011.03.026

    Article  CAS  Google Scholar 

  • Bateman A, van der Horst D, Boardman D, Kansal A, Carliell-Marquet C (2011) Closing the phosphorus loop in England: the spatio-temporal balance of phosphorus capture from manure versus crop demand for fertiliser. Resour Conserv Recycl 55:1146–1153. doi:10.1016/j.resconrec.2011.07.004

    Article  Google Scholar 

  • Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2011) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS 110:20882–20887. doi:10.1073/pnas.1012878108

    Article  Google Scholar 

  • Brodie JE, Devlin M, Haynes D, Waterhouse J (2011) Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106:281–302. doi:10.1007/s10533-010-9542-2

    Article  CAS  Google Scholar 

  • Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Boca Raton, FL

  • Brunner PH (2010) Substance flow analysis as a decision support tool for phosphorus management. J Ind Ecol 14:870–873. doi:10.1111/j.1530-9290.2010.00300.x

    Article  CAS  Google Scholar 

  • Butusov M, Jernelöv A (2013) Phosphorus: an element that could have been called Lucifer. Springer, Dordrecht

    Book  Google Scholar 

  • Chowdhury RB (2015) Modelling multi-year phosphorus flow at the regional scale: the case of Gippsland, Australia. PhD thesis, Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia. https://minerva-access.unimelb.edu.au/handle/11343/55307

  • Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228. doi:10.1016/j.resconrec.2013.10.014

    Article  Google Scholar 

  • Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2015) A novel substance flow analysis model for analysing multi-year phosphorus flow at the regional scale. Sci Total Environ. doi:10.1016/j.scitotenv.2015.10.055

    Google Scholar 

  • Conley DJ (2012) Ecology: save the Baltic Sea. Nature 486:463–464. doi:10.1038/486463a

    Article  CAS  Google Scholar 

  • Cooper J, Carliell-Marquet C (2013) A substance flow analysis of phosphorus in the UK food production and consumption system. Resour Conserv Recycl 74:82–100. doi:10.1016/j.resconrec.2013.03.001

    Article  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758. doi:10.1016/j.chemosphere.2011.02.032

    Article  CAS  Google Scholar 

  • Cordell D, Neset T-SS, Prior T (2012) The phosphorus mass balance: identifying ‘hotspots’ in the food system as a roadmap to phosphorus security. Curr Opin Biotechnol 23:839–845. doi:10.1016/j.copbio.2012.03.010

    Article  CAS  Google Scholar 

  • Cordell D, Jackson M, White S (2013) Phosphorus flows through the Australian food system: identifying intervention points as a roadmap to phosphorus security. Environ Sci Pol 29:87–102. doi:10.1016/j.envsci.2013.01.008

    Article  CAS  Google Scholar 

  • Costa SEVGA, Souza ED, Anghinoni I, Carvalho PCF, Martins AP, Kunrath TR, Cecagno D, Balerini F (2014) Impact of an integrated no-till crop–livestock system on phosphorus distribution, availability and stock. Agric Ecosyst Environ 190:43–51. doi:10.1016/j.agee.2013.12.001

    Article  CAS  Google Scholar 

  • Dumas M, Frossard E, Scholz RW (2011) Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84:798–805. doi:10.1016/j.chemosphere.2011.02.039

    Article  CAS  Google Scholar 

  • Egle L, Zoboli O, Thaler S, Rechberger H, Zessner M (2014) The Austrian P budget as a basis for resource optimization. Resour Conserv Recycl 83:152–162. doi:10.1016/j.resconrec.2013.09.009

    Article  Google Scholar 

  • Fan Y, Hu S, Chen D, Li Y, Shen J (2009) The evolution of phosphorus metabolism model in China. J Clean Prod 17:811–820. doi:10.1016/j.jclepro.2008.12.007

    Article  CAS  Google Scholar 

  • FAO (2011) Current World Fertilizer Trends and Outlook to 2015. Food and Agriculture Organisation of the United Nations, Rome, Italy. ftp://ftp.fao.org/ag/agp/docs/cwfto15.pdf

  • GRDC (2012) Crop Nutrition, Fact Sheet. Grain Research and Development Corporation (GRDC), Australian Government. http://www.grdc.com.au/Resources/Factsheets/2012/11/Crop-Nutrition-Phosphorus-Management-Fact-Sheet. Accessed 14 Aug 2013

  • Gustafsson B, Schenk F, Blenckner T, Eilola K, Meier HEM, Müller-Karulis B, Neumann T, Ruoho-Airola T, Savchuk O, Zorita E (2012) Reconstructing the development of Baltic Sea eutrophication 1850–2006. AMBIO 41:534–548. doi:10.1007/s13280-012-0318-x

    Article  CAS  Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea – an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc, No. 115B. http://www.helcom.fi/Lists/Publications/BSEP115b.pdf. Accessed 14 Sep 2013

  • IPNI (2014) 4R nutrient stewardship portal. International Plant Nutrient Institute, 500 Parkway Lane, Suite 550, Peachtree Corners, Georgia 30092–2844 USA. http://www.ipni.net/4R. Accessed 28 May 2014

  • Jeong Y-S, Matsubae-Yokoyama K, Kubo H, Pak J-J, Nagasaka T (2009) Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry. Resour Conserv Recycl 53:479–489. doi:10.1016/j.resconrec.2009.04.002

    Article  Google Scholar 

  • Kalmykova Y, Harder R, Borgestedt H, Svanäng I (2012) Pathways and management of phosphorus in urban areas. J Ind Ecol 16:928–939. doi:10.1111/j.1530-9290.2012.00541.x

    Article  CAS  Google Scholar 

  • Kebreab E, Hansen AV, Strathe AB (2012) Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877. doi:10.1016/j.copbio.2012.06.001

    Article  CAS  Google Scholar 

  • Kroon FJ, Kuhnert PM, Henderson BL, Wilkinson SN, Kinsey-Henderson A, Abbott B, Brodie JE, Turner RDR (2012) River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Mar Pollut Bull 65:167–181. doi:10.1016/j.marpolbul.2011.10.018

    Article  CAS  Google Scholar 

  • Lederer J, Laner D, Fellner JA (2014) Framework for the evaluation of anthropogenic resources: the case study of phosphorus stocks in Austria. J Clean Prod 84:368–381. doi:10.1016/j.jclepro.2014.05.078

    Article  CAS  Google Scholar 

  • Li B, Boiarkina I, Young B, Yu W (2015) Substance flow analysis of phosphorus within New Zealand and comparison with other countries. Sci Total Environ 527–528:483–492. doi:10.1016/j.scitotenv.2015.04.060

  • Li S, Yuan Z, Bi J, Wu H (2010) Anthropogenic phosphorus flow analysis of Hefei City, China. Sci Total Environ 408:5715–5722. doi:10.1016/j.scitotenv.2010.08.052

    Article  CAS  Google Scholar 

  • Ma D, Hu S, Chen D, Li Y (2012) Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China. J Clean Prod 29–30:188–198. doi:10.1016/j.jclepro.2012.01.033

  • Ma D, Hu S, Chen D, Li Y (2013) The temporal evolution of anthropogenic phosphorus consumption in China and its environmental implications. J Ind Ecol 17:566–577. doi:10.1111/jiec.12009

    Article  Google Scholar 

  • Matsubae-Yokoyama K, Kubo H, Nakajima K, Nagasaka T (2009) A material flow analysis of phosphorus in Japan. J Ind Ecol 13:687–705. doi:10.1111/jiec.12009

    Article  CAS  Google Scholar 

  • McDowell RW, Sharpley AN, Condron LM, Haygarth PM, Brookes PC (2001) Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutr Cycl Agroecosyst 59:269–284. doi:10.1023/A:1014419206761

    Article  Google Scholar 

  • McLaughlin M, McBeath T, Smernik R, Stacey S, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant Soil 349:69–87. doi:10.1007/s11104-011-0907-7

    Article  CAS  Google Scholar 

  • Meidinger RG, Ajakaiye A, Fan MZ, Zhang J, Phillips JP, Forsberg CW (2013) Digestive utilization of phosphorus from plant based diets in the Cassie line of transgenic Yorkshire pigs that secrete phytase in the saliva. J Anim Sci 91:1307–1320. doi:10.2527/jas.2012-5575

    Article  CAS  Google Scholar 

  • Metson GS, M. BE, Elser JJ (2012a) The role of diet in phosphorus demand. Environ Res Lett 7:1–10. doi: 10.1088/1748-9326/7/4/044043

  • Metson G, Aggarwal R, Childers DL (2012b) Efficiency through proximity. J Ind Ecol 16:914–927. doi:10.1111/j.1530-9290.2012.00554.x

    Article  Google Scholar 

  • Metson GS, Hale RL, Iwaniec DM, Cook EM, Corman JR, Galletti CS, Childers DL (2012c) Phosphorus in Phoenix: a budget and spatial representation of phosphorus in an urban ecosystem. Ecol Appl 22:705–721. doi:10.1890/11-0865.1

    Article  Google Scholar 

  • Mihelcic JR, Fry LM, Shaw R (2011) Global potential of phosphorus recovery from human urine and feces. Chemosphere 84:832–839. doi:10.1016/j.chemosphere.2011.02.046

    Article  CAS  Google Scholar 

  • Murphy R, Kemp WM, Ball W (2011) Long-term trends in chesapeake bay seasonal hypoxia, stratification, and nutrient loading. Estuar Coasts 34:1293–1309. doi:10.1007/s12237-011-9413-7

    Article  CAS  Google Scholar 

  • Muster TH, Douglas GB, Sherman N, Seeber A, Wright N, Güzükara Y (2013) Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere 91:676–684. doi:10.1016/j.chemosphere.2013.01.057

    Article  CAS  Google Scholar 

  • Neset T-SS, Bader H-P, Scheidegger R, Lohm U (2008) The flow of phosphorus in food production and consumption—Linköping, Sweden, 1870–2000. Science Total Environ 396:111–120. doi:10.1016/j.scitotenv.2008.02.010

    Article  Google Scholar 

  • Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl 93:32–49. doi:10.1016/j.resconrec.2014.09.006

    Article  Google Scholar 

  • Roy ED, White JR, Seibert M (2014) Societal phosphorus metabolism in future coastal environments: insights from recent trends in Louisiana, USA. Glob Environ Chang 28:1–13. doi:10.1016/j.gloenvcha.2014.05.009

    Article  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. PNAS 109:6348–6353. doi:10.1073/pnas.1113675109

    Article  CAS  Google Scholar 

  • Scholz RW, Roy AH, Hellums DT (2014) Sustainable phosphorus management: a transdisciplinary challenge. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 1–113

    Chapter  Google Scholar 

  • Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:822–831. doi:10.1016/j.chemosphere.2011.01.065

    Article  Google Scholar 

  • Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012) Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutr Cycl Agroecosyst 92:145–159. doi:10.1007/s10705-011-9478-5

    Article  Google Scholar 

  • Senthilkumar K, Mollier A, Delmas M, Pellerin S, Nesme T (2014) Phosphorus recovery and recycling from waste: an appraisal based on a French case study. Resour Conserv Recycl 87:97–108. doi:10.1016/j.resconrec.2014.03.005

    Article  Google Scholar 

  • Sharpley AN, Daniel T, Gibson G, Bundy L, Cabrera M, Sims T, Stevens R, Lemunyon J, Kleinman P, Parry R (2006) Best management practices to minimize agricultural phosphorus impacts on water quality. Agricultural Research Service, United States Department of Agriculture, USA

    Google Scholar 

  • Shilton AN, Powell N, Guieysse B (2012) Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr Opin Biotechnol 23:884–889. doi:10.1016/j.copbio.2012.07.002

    Article  CAS  Google Scholar 

  • Simons A, Solomon D, Chibssa W, Blalock G, Lehmann J (2014) Filling the phosphorus fertilizer gap in developing countries. Nature 7:3. doi:10.1038/ngeo2049

    CAS  Google Scholar 

  • Smit AL, van Middelkoop JC, van Dijk W, van Reuler H (2015) A substance flow analysis of phosphorus in the food production, processing and consumption system of the Netherlands. Nutr Cycl Agroecosyst 103:1–13. doi:10.1007/s10705-015-9709-2

    Article  CAS  Google Scholar 

  • Suh S, Yee S (2011) Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere 84:806–813. doi:10.1016/j.chemosphere.2011.01.051

    Article  CAS  Google Scholar 

  • Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, de Vries W et al (2013) Our Nutrient World. The challenge to produce more food and energy with less pollution. Global overview of nutrient management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative

  • Tian J, Wang X, Tong Y, Chen X, Liao H (2012) Bioengineering and management for efficient phosphorus utilization in crops and pastures. Curr Opin Biotechnol 23:866–871. doi:10.1016/j.copbio.2012.03.002

    Article  CAS  Google Scholar 

  • Tirado R, Allsopp, M (2012) Phosphorus in agriculture: problems and solutions. Greenpeace Research Laboratories Technical Report (Review) 02, Greenpeace International, Amsterdam, The Netherlands

  • Ulrich A, Schnug E (2013) The modern phosphorus sustainability movement: a profiling experiment. Sustainability 5:4523–4545. doi:10.3390/su5114523

    Article  Google Scholar 

  • US EPA (2011) Moving forward on Gulf Hypoxia: annual report 2011. Mississippi River Gulf of Mexico Watershed Nutrient Task Force, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460

  • USGS (2014) Mineral commodity summaries. Phosphate Rock Statistics and Information. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/. Accessed 17 Dec 2014

  • Van Kauwenbergh SJ, Stewart M, Mikkelsen R (2013) World reserves of phosphate rock—a dynamic and unfolding story. Better Crops 97:18–20. http://www.ifdc.org/World-Reserves-of-Phosphate-Rock-a-Dynamic-and-Unf.pdf/

  • Watson I, van Straaten P, Katz T, Botha L (2014) Mining and concentration: what mining to what cost and benefits. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 153–173

    Chapter  Google Scholar 

  • Wu H, Yuan Z, Zhang L, Bi J (2012) Eutrophication mitigation strategies: perspectives from the quantification of phosphorus flows in socioeconomic system of Feixi, Central China. J Clean Prod 23:122–137. doi:10.1016/j.jclepro.2011.10.019

    Article  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Gaoa G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432. doi:10.4319/lo.2010.55.1.0420

    Article  CAS  Google Scholar 

  • Yuan Z, Liu X, Wu H, Zhang L, Bi J (2011a) Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China. Ecol Model 222:1534–1543. doi:10.1016/j.ecolmodel.2011.01.016

    Article  CAS  Google Scholar 

  • Yuan Z, Shi J, Wu H, Zhang L, Bi J (2011b) Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J Environ Manag 92:2021–2028. doi:10.1016/j.jenvman.2011.03.025

    Article  CAS  Google Scholar 

  • Zhang H-L, Fang W, Wang Y-P, Sheng G-P, Zeng RJ, Li W-W, Yu H-Q (2013) Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol 47:11482–11489. doi:10.1021/es403227p

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from the Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE), Australia, through its Australia Awards Endeavour Scholarships and Fellowships scheme. We also acknowledge the financial support of the Melbourne School of Engineering, The University of Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubel Biswas Chowdhury.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, R.B., Chakraborty, P. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales. Environ Sci Pollut Res 23, 15929–15940 (2016). https://doi.org/10.1007/s11356-016-6930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6930-8

Keywords

Navigation