Skip to main content
Log in

Photocatalytic abatement results from a model street canyon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2 % was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor Air quality. Atmos Environ 42:4101–4112

    Article  CAS  Google Scholar 

  • Ballari MM, Brouwers HJH (2013) Full scale demonstration of air-purifying pavement. J Hazard Mat 254–255:406–414

    Article  CAS  Google Scholar 

  • Beaumont SK, Gustafsson RJ, Lambert RM (2009) Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. Chem Phys Chem 10:331–333

  • Beekmann M, Vautard R (2010) A modelling study of photochemical regimes over Europe: robustness and variability. Atmos Chem Phys 10:10067–10084

    Article  CAS  Google Scholar 

  • Birmili W, Stratmann F, Wiedensohler A (1999) Design of a DMA-based size spectrometer for a large particle size range and stable operation. J Aerosol Sci 30:549–553

    Article  CAS  Google Scholar 

  • Bolte G, Flassak T (2012) Numerische Simulation der Wirksamkeit photokatalytisch aktiver Betonoberflächen. In: Internationale Baustofftagung 18. ibausil (proceedings), Weimar, Germany, 1:548-558

  • Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin JF, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini GL, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A (2015) Construction of a photocatalytic De-polluting field site in the Leopold II tunnel in Brussels. J Environ Manag 155:136–144

  • Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spec Rev 26:185–222

    Article  CAS  Google Scholar 

  • Carslaw DC, Beevers SD, Bell MC (2007) Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmos Environ 41:2073–2082

    Article  CAS  Google Scholar 

  • Carslaw DC, Beevers SD, Tate JE, Westmoreland EJ, Williams ML (2011) Recent evidence concerning higher NOx emissions from passenger cars and light duty vehicles. Atmos Environ 45:7053–7063

    Article  CAS  Google Scholar 

  • Carslaw DC, Rhys-Tyler GR (2013) New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos Environ 81:339–347

    Article  CAS  Google Scholar 

  • Chang KL, Sekiguchi K, Wang QY, Zhao F (2013) Removal of ethylene and secondary organic aerosols using UV-C254 + 185 nm with TiO2 catalyst. Aerosol Air Qual Res 13:618–626

    CAS  Google Scholar 

  • Chen J, Poon C-S (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906

    Article  Google Scholar 

  • Chen J, Kou S, Poon C (2011) Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evalutation of self-cleaning. Build Environ 46:1827–1833

    Article  Google Scholar 

  • Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948

    Article  CAS  Google Scholar 

  • Costa A, Chiarello GL, Selli E, Guarino M (2012) Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J Environ Manag 96:86–90

    Article  CAS  Google Scholar 

  • De Richter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photochem Photobiol C Photochem Rev 12:1–19

    Article  CAS  Google Scholar 

  • EEA (3/2014) Air pollution by ozone across Europe during summer 2013: Overview of exceedances of EC ozone threshold values: April–September 2013, ISSN 1725-2237

  • EEA (5/2014) Air quality in Europe — 2014 report, ISSN 1725-9177

  • Finlayson-Pitts BJ, Pitts Jr. JN (2000) Chemistry of the upper and lower atmosphere. Academic Press

  • Flassak T (2012) Numerical simulation of the depollution effectiveness of photocatalytic coverings in street canyons. In: Photocatalysis: science and application for urban Air quality. The LIFE+ PhotoPaq conference, Corse, France

  • Fraunhofer (2010) Clean air by airclean®. http://www.ime.fraunhofer.de/content/dam/ime/de/documents/AOe/2009_2010_Saubere%20Luft%20durch%20Pflastersteine_s.pdf. Accessed 11 May 2015

  • Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boréave A, Cazaunau M, Chen H, Daële V, Doussin JF, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J (2015) Photocatalytic nitrogen oxides abatement results from the Leopold II tunnel in Brussels. Build Environ 84:125–133

  • Geiss O, Cacho C, Barrero-Moreno J, Kotzias D (2012) Photocatalytic degradation of organic paint constituents – formation of carbonyls. Build Environ 48:107–112

    Article  Google Scholar 

  • Guerrini GL, Peccati E (2007) Photocatalytic cementitious roads for depollution. International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, pp 179–186

    Google Scholar 

  • Gustafsson RJ, Orlov A, Griffiths PT, Cox RA, Lambert RM (2006) Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chem Commun 3936–3938

  • Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J (2014) Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmos Environ 91:154–161

    Article  CAS  Google Scholar 

  • IPL (2010) Dutch Air Quality Innovation Programme concluded: Improved Air Quality with Coating of Titanium Dioxide not Demonstrated. http://laqm.defra.gov.uk/documents/Dutch_Air_Quality_Innovation_Programme.pdf. Accessed 11 May 2015

  • Jacobi S (2012) NO2-Reduzierung durch photocatalytisch wirksame Oberflächen? Modellversuch Fulda. Hessisches Landesamt für Umwelt und Geologie. http://www.hlug.de/fileadmin/dokumente/das_hlug/jahresbericht/2012/jb2012_059-066_I2_Jacobi_final.pdf. Accessed 11 May 2015

  • Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P (2012) Primary NO2 emissions and their impact on air quality in traffic environments in Europe. Environ Sci Eur 24:1–8

    Article  CAS  Google Scholar 

  • LANUV (2009) Landesamt für Natur, Umwelt und Verbraucherschutz in Nordrhein-Westfalen. Auswirkung der Umweltzone Köln auf die Luftqualität – Auswertung der Messdaten. http://www.lanuv.nrw.de/luft/pdf/Umweltzone_Koeln_20090625.pdf. Accessed 11 May 2015

  • Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J (2010) Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmos Environ 44:2341–2349

    Article  CAS  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241

    Article  CAS  Google Scholar 

  • Maggos T, Plassais A, Bartzis JG, Vasilakos C, Moussiopoulos N, Bonafous L (2008) Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ Monit Assess 136:35–44

    Article  CAS  Google Scholar 

  • Melkonyan A, Kuttler W (2012) Long-term analysis of NO, NO2 and O3 in North Rhine-Westphalia, Germany. Atmos Environ 60:316–326

    Article  CAS  Google Scholar 

  • Monge ME, D’Anna B, George C (2010a) Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces – an air quality remediation process? Phys Chem Chem Phys 12:8991–8998

    Article  CAS  Google Scholar 

  • Monge ME, George C, D’Anna B, Doussin J-F, Jammoul A, Wang J, Eyglunent G, Solignac G, Daële V, Melluki A (2010b) Ozone formation from illuminated titanium dioxide surfaces. J Am Chem Soc 132:8234–8235

    Article  CAS  Google Scholar 

  • Ndour M, D’Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M (2008) Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophys Res Lett 35, L05812

    Google Scholar 

  • Ohama Y, Van Gemert D (2011) Application of titanium dioxide photocatalysis to construction materials. State-of-the-Art Report of the RILEM Technical Committee 194-TDP, Springer, XII; p 48

  • Panteliadis P, Strak M, Hoek G, Weijers E, van der Zee S, Dijkema M (2014) Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring, UK. Atmos Environ 86:113–119

    Article  CAS  Google Scholar 

  • PhotoPAQ (2014) European Life+ project PhotoPAQ. http://photopaq.ircelyon.univ-lyon1.fr/. Accessed 11 May 2015

  • PICADA (2006) European PICADA Project, GROWTH Project GRD1-2001-40449. http://www.picada-project.com/domino/SitePicada/Picada.nsf?OpenDataBase. Accessed 11 May 2015

  • Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C (2000) Purification/ deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 63:363–369

    Article  CAS  Google Scholar 

  • Pitts JN Jr (1983) Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres. Environ Health Perspect 47:115–140

    Article  CAS  Google Scholar 

  • Salthammer T, Fuhrmann F (2007) Photocatalytic surface reactions on indoor paint. Environ Sci Technol 41:6573–6578

    Article  CAS  Google Scholar 

  • Scheinhardt S, Spindler G, Leise S, Müller K, Iinuma Y, Zimmermann F, Matschullat J, Herrmann H (2013) Comprehensive chemical characterisation of size-segregated PM10 in Dresden and estimation of changes due to global warming. Atmos Environ 75:365–373

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Strini A, Cassese S, Schiavi L (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl Catal B Environ 61:90–97

    Article  CAS  Google Scholar 

  • Tera (2009) In situ study of the air pollution mitigating properties of photocatalytic coating, Tera Environement, (Contract number 0941C0978), Report for ADEME and Rhone-Alpe region, France. http://www.air-rhonealpes.fr/site/media/telecharger/651413. Accessed 11 May 2015

  • VDI (2006) 3782, Part 5, Environmental Meteorology, Atmospheric Dispersion Models, Deposition Parameters. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1b

  • Velders GJM, Geilenkirchen GP, de Lange R (2011) Higher than expected NOx emission from trucks may affect attainability of NO2 limit values in the Netherlands. Atmos Environ 45:3025–3033

    Article  CAS  Google Scholar 

  • Villena G, Bejan I, Kurtenbach R, Wiesen P, Kleffmann J (2012) Interferences of commercial NO2 instruments in the urban atmosphere and in a smog-chamber. Atmos Meas Tech 5:149–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the European Commission through the Life+ grant LIFE 08 ENV/F/000487 PHOTOPAQ. The authors also want to thank Mr. Daniele Salvi for his technical help during the campaigns at the Petosino site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kleffmann.

Additional information

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallus, M., Ciuraru, R., Mothes, F. et al. Photocatalytic abatement results from a model street canyon. Environ Sci Pollut Res 22, 18185–18196 (2015). https://doi.org/10.1007/s11356-015-4926-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4926-4

Keywords

Navigation