Skip to main content

Advertisement

Log in

Effects of a sulfonylurea herbicide on the soil bacterial community

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sulfonylurea herbicides are widely used on a wide range of crops to control weeds. Chevalier® OnePass herbicide is a sulfonylurea herbicide intensively used on cereal crops in Algeria. No information is yet available about the biodegradation of this herbicide or about its effect on the bacterial community of the soil. In this study, we collected an untreated soil sample, and another sample was collected 1 month after treatment with the herbicide. Using a high-resolution melting DNA technique, we have shown that treatment with Chevalier® OnePass herbicide only slightly changed the composition of the whole bacterial community. Two hundred fifty-nine macroscopically different clones were isolated from the untreated and treated soil under both aerobic and microaerobic conditions. The strains were identified by sequencing a conserved fragment of the 16S rRNA gene. The phylogenetic trees constructed using the sequencing results confirmed that the bacterial populations were similar in the two soil samples. Species belonging to the Lysinibacillus, Bacillus, Pseudomonas, and Paenibacillus genera were the most abundant species found. Surprisingly, we found that among ten strains isolated from the treated soil, only six were resistant to the herbicide. Furthermore, bacterial overlay experiments showed that only one resistant strain (related to Stenotrophomonas maltophilia) allowed all the sensitive strains tested to grow in the presence of the herbicide. The other resistant strains allowed only certain sensitive strains to grow. On the basis of these results, we propose that there must be several biodegradation pathways for this sulfonylurea herbicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berger BM, Janowitz K, Menne HJ, Hoppe H-H (1998) Comparative study on microbial and chemical transformation of eleven sulfonylurea herbicides in soil. Z Für Pflanzenkrankh Pflanzenschutz 105:611–623

    CAS  Google Scholar 

  • Beyer EM, Duffy MF, Hay JV, Schlueter DD (1988) Sulfonylurea. In: Kearney PC, Kaufman DD (eds) Herbic. Chem. Degrad. Mode Action, Dekker. New York, pp 117–183

  • Brown HM (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci 29:263–281. doi:10.1002/ps.2780290304

    Article  CAS  Google Scholar 

  • Chanal A, Chapon V, Benzerara K et al (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi:10.1111/j.1462-2920.2005.00921.x

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879

    Article  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  Google Scholar 

  • Hang B-J, Hong Q, Xie X-T et al (2012) SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113. Appl Environ Microbiol 78:1962–1968. doi:10.1128/AEM.07440-11

    Article  CAS  Google Scholar 

  • He W-H, Wang Y-N, Du X et al (2012) Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application. Curr Microbiol 65:595–600. doi:10.1007/s00284-012-0187-3

    Article  CAS  Google Scholar 

  • Hemmamda S, Calmon M, Calmon JP (1994) Kinetics and hydrolysis mechanism of chlorsulfuron and metsulfuron-methyl. Pestic Sci 40:71–76. doi:10.1002/ps.2780400112

    Article  CAS  Google Scholar 

  • Ismail BS, Goh KM, Kader J (1996) Effects of metsulfuronmethyl on microbial biomass and populations in soils. J Environ Sci Health Part B 31:987–999. doi:10.1080/03601239609373049

    Article  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y et al (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. doi:10.1093/nar/gkn201

    Article  CAS  Google Scholar 

  • Kamrin MA (1997) Pesticide profiles: toxicity, environmental impact, and fate. CRC Press

  • Labrenz M, Banfield JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217. doi:10.1007/s00248-003-1025-8

    CAS  Google Scholar 

  • Lee Y-T, Cui C-J, Chow EWL et al (2013) Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem 56:210–219. doi:10.1021/jm301501k

    Article  CAS  Google Scholar 

  • Li-feng G, Jian-dong J, Xiao-hui L et al (2007) Biodegradation of ethametsulfuron-methyl by Pseudomonas sp. SW4 isolated from contaminated soil. Curr Microbiol 55:420–426. doi:10.1007/s00284-007-9011-x

    Article  Google Scholar 

  • Lin X-Y, Yang Y-Y, Zhao Y-H, Fu Q-L (2012) Biodegradation of bensulfuron-methyl and its effect on bacterial community in paddy soils. Ecotoxicol Lond Engl 21:1281–1290. doi:10.1007/s10646-012-0882-7

    Article  CAS  Google Scholar 

  • Lu P, Jin L, Liang B et al (2011) Study of biochemical pathway and enzyme involved in metsulfuron-methyl degradation by Ancylobacter sp. XJ-412-1 isolated from soil. Curr Microbiol 62:1718–1725. doi:10.1007/s00284-011-9919-z

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock Biology of Microorganisms. Pearson Prentice Hall.

  • Manickam N, Ghosh A, Jain RK, Mayilraj S (2008) Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst Appl Microbiol 31:101–107. doi:10.1016/j.syapm.2008.02.002

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory

  • Neumann M, Mittelstädt G, Seduk F et al (2009) MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J Biol Chem 284:21891–21898. doi:10.1074/jbc.M109.008565

    Article  CAS  Google Scholar 

  • Nicholls PH, Evans A. (1987) The behavior of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet. Proc. Br. Crop Prot. Weeds Conf. BCPC Publications, pp 549–556

  • Sarmah AK, Sabadie J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50:6253–6265

    Article  CAS  Google Scholar 

  • Sondhia S (2009a) Persistence of metsulfuron-methyl in paddy field and detection of its residues in crop produce. Bull Environ Contam Toxicol 83:799–802. doi:10.1007/s00128-009-9822-5

    Article  CAS  Google Scholar 

  • Sondhia S (2009b) Leaching behaviour of metsulfuron in two texturally different soils. Environ Monit Assess 154:111–115. doi:10.1007/s10661-008-0381-8

    Article  CAS  Google Scholar 

  • Sondhia S, Waseem U, Varma RK (2013) Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere. doi:10.1016/j.chemosphere.2013.07.066

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi:10.1080/10635150701472164

    Article  CAS  Google Scholar 

  • Umbarger HE, Brown B (1958) Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate. J Biol Chem 233:1156–1160

    CAS  Google Scholar 

  • Valle A, Boschin G, Negri M et al (2006) The microbial degradation of azimsulfuron and its effect on the soil bacterial community. J Appl Microbiol 101:443–452. doi:10.1111/j.1365-2672.2006.02937.x

    Article  CAS  Google Scholar 

  • Xu J, Li X, Xu Y et al (2009) Biodegradation of pyrazosulfuron-ethyl by three strains of bacteria isolated from contaminated soils. Chemosphere 74:682–687. doi:10.1016/j.chemosphere.2008.09.078

    Article  CAS  Google Scholar 

  • Yin LB, Liu Y, Zhang DY, Zhang SB (2011) Isolation and characterization of Rhodopseudomonas sp. S9-1 capable of degradating pyrazosulfuron-ethyl. Adv Mater Res 356–360:1152–1163. doi:10.4028/www.scientific.net/AMR.356-360.1152

    Article  Google Scholar 

  • Zanardini E, Negri M, Boschin G et al (2002) Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger. Sci World J 2:1501–1506. doi:10.1100/tsw.2002.281

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Rouabah for his help in the soil sample collection and V. Michotey for supplying the oceanic metagenome. We are grateful to M. Ilbert, C. Aussignargues, and S. Bouillet for the valuable suggestions and discussions. Monika Gosh is acknowledged for improving the English version of the manuscript. This work is funded by the Faculté des Sciences de la Nature et de la Vie, Université Constantine 1 (Algeria), the Centre National de la Recherche Scientifique (CNRS), and the Aix-Marseille Université (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Méjean.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabet, D., Tempel, S., Fons, M. et al. Effects of a sulfonylurea herbicide on the soil bacterial community. Environ Sci Pollut Res 21, 5619–5627 (2014). https://doi.org/10.1007/s11356-014-2512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2512-9

Keywords

Navigation