Skip to main content
Log in

Chilling slows anaerobic metabolism to improve anoxia tolerance of insects

  • Short Communication
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Insects are renowned for their ability to survive anoxia. Anoxia tolerance may be enhanced during chilling through metabolic suppression.

Aims

Here, the metabolomic response of insects to anoxia, both with and without chilling, for different durations (12–36 h) was examined to assess the potential cross-tolerance mechanisms.

Results

Chilling during anoxia (cold anoxia) significantly improved survival relative to anoxia at warmer temperatures. Reduced intermediate metabolites and increased lactic acid, indicating a switch to anaerobic metabolism, were characteristic of larvae in anoxia.

Conclusions

Anoxia tolerance was correlated survival improvements after cold anoxia were correlated with a reduction in anaerobic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Benasayag-Meszaros, R., Risley, M. G., Hernandez, P., Fendrich, M., & Dawson-Scully, K. (2015). Pushing the limit: Examining factors that affect anoxia tolerance in a single genotype of adult D. melanogaster. Scientific Reports, 5, 9204. doi:10.1038/srep09204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boardman, L., Sørensen, J. G., Kostál, V., Simek, P., & Terblanche, J. S. (2016). Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Scientific Reports, 6, 32856. doi:10.1038/srep32856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boardman, L., Sørensen, J. G., & Terblanche, J. S. (2013). Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. Journal of Insect Physiology, 59, 781–794. doi:10.1016/j.jinsphys.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Boardman, L., Sørensen, J. G., & Terblanche, J. S. (2015). Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Journal of Insect Physiology, 82, 75–84. doi:10.1016/j.jinsphys.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Chinopoulos, C. (2013). Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. Journal of Neuroscience Research, 91(8), 1030–1043. doi:10.1002/jnr.23196.

    Article  CAS  PubMed  Google Scholar 

  • Feala, J. D., Coquin, L., McCulloch, A. D., & Paternostro, G. (2007). Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Molecular Systems Biology, 3(99), 99. doi:10.1038/msb4100139.

    PubMed  PubMed Central  Google Scholar 

  • Gäde, G. (1985). Anaerobic energy metabolism. In K. H. Hoffmann (Ed.), Environmental Physiology and Biochemistry of Insects. Heidelberg: Springer. doi:10.1007/978-94-007-1896-8.

    Google Scholar 

  • Haddad, G. G. (2006). Tolerance to low O2: lessons from invertebrate genetic models. Experimental Physiology, 91(2), 277–282. doi:10.1113/expphysiol.2005.030767.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J., Frazier, M. R., Henry, J. R., Kaiser, A., Klok, C. J., & Rascón, B. (2006). Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology & Neurobiology, 154(1–2), 4–17. doi:10.1016/j.resp.2006.02.008.

    Article  CAS  Google Scholar 

  • Hoback, W. W. (2012). Ecological and experimental exposure of insects to anoxia reveals surprising tolerance. In A. V. Altenbach, J. M. Bernhard, & J. Seckbach (Eds.), Evidence for eukaryote survival and paleontological strategies. Dordrecht: Springer. doi:10.1007/978-94-007-1896-8.

    Google Scholar 

  • Hoback, W. W., Podrabsky, J. E., Higley, L. G., Stanley, D. W., & Hand, S. C. (2000). Anoxia tolerance of con-familial tiger beetle larvae is associated with differences in energy flow and anaerobiosis. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 170(4), 307–314. doi:10.1007/s003600000104.

    Article  CAS  PubMed  Google Scholar 

  • Hoback, W. W., Stanley, D. W., Higley, L. G., & Barnhart, M. C. (1998). Survival of immersion and anoxia by larval tiger beetles. Cicindela togata. The American Midland Naturalist, 140(1), 27–33. doi:10.1674/0003-0031(1998)140[0027:SOIAAB]2.0.CO;2.

  • Hofmeyr, J. H., Carpenter, J. E., Bloem, S., Slabbert, J. P., Hofmeyr, M., & Groenewald, S. S. (2015). Development of the sterile insect technique to suppress false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: research to implementation (Part 1). African Entomology, 23(1), 180–186. doi:10.4001/003.023.0112.

    Article  Google Scholar 

  • Meidell, E. M. (1983). Diapause, aerobic and anaerobic metabolism in alpine, adult Melasoma Collaris (Coleoptera). Oikos, 41(2), 239–244.

    Article  Google Scholar 

  • Price, G. M. (1963). The effects of anoxia on metabolism in the adult housefly, Musca domestica. Biochemistry, 86, 372–378.

    Article  CAS  Google Scholar 

  • Rehr, S. S., Janzen, D. H., & Feeny, P. P. (1973). L-Dopa in legume seeds: a chemical barrier to insect attack. Science, 181(4094), 81–82. doi:10.1126/science.181.4094.81.

    Article  CAS  PubMed  Google Scholar 

  • Schilman, P. E., Waters, J. S., Harrison, J. F., & Lighton, J. R. B. (2011). Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster. Journal of Experimental Biology, 214(8), 1271–1275. doi:10.1242/jeb.052357.

    Article  PubMed  Google Scholar 

  • Soderstrom, E. L., Brandl, D. G., & Mackay, B. (1991). Responses of Cydia pomonella (L.) (Lepidoptera: Tortricidae) adults and eggs to oxygen deficient or carbon dioxide enriched atmospheres. Journal of Stored Product Research, 27(2), 95–101.

    Article  Google Scholar 

  • Soderstrom, E. L., Brandl, D. G., & Mackey, B. (1990). Responses of codling moth (Lepidoptera:Tortricidae) life stages to high carbon dioxide or low oxygen atmospheres. Journal of Economic Entomology. doi:10.1093/jee/83.2.472472-475.

    Google Scholar 

  • Storey, K. B., & Storey, J. M. (2005). Oxygen limitation and metabolic rate depression. In K. B. Storey (Ed.), Functional Metabolism: Regulation and Adaptation (pp. 141–165). Hoboken: Wiley.

    Google Scholar 

  • Storey, K. B., & Storey, J. M. (2010). Oxygen: stress and adaptation in cold hardy insects. In D. L. Denlinger & R. E. J. Lee (Eds.), Low Temperature Biology of Insects (pp. 141–165). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Verberk, W. C. E. P., Overgaard, J., Ern, R., Bayley, M., Wang, T., Boardman, L., et al. (2016). Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 64–78. doi:10.1016/j.cbpa.2015.10.020.

    Article  CAS  Google Scholar 

  • Weyel, W., & Wegener, G. (1996). Adenine nucleotide metabolism during anoxic and postanoxic recovery in insects. Experientia, 52, 474–480.

    Article  CAS  Google Scholar 

  • Whiting, D. C., Foster, S. P., Van Den Heuvel, J., & Maindonald, J. H. (1992). Comparative mortality responses of four Tortricid (Lepidoptera) species to a low oxygen controlled atmosphere. Journal of Economic Entomology, 85(6), 2305–2309. doi:10.1093/jee/85.6.2305.

    Article  Google Scholar 

  • Wise, D. R., Ward, P. S., Shay, J. E. S., Cross, J. R., Gruber, J. J., Sachdeva, U. M., et al. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19611–19616. doi:10.1073/pnas.1117773108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257. doi:10.1093/nar/gkv380.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

XSIT kindly provided larvae. We are grateful for comments by anonymous referees that helped improve the work.

Funding

This research was completed with financial support from International Atomic Energy Agency (CRP), Hortgro Stellenbosch and Citrus Research International to JST and metabolomics analysis was supported by the Czech Science Foundation, No. 13-18509S to PS. LB was supported by National Research Foundation (NRF) DST Postdoctoral fellowship, JGS was supported by a Sapere Aude DFF-Starting grant from The Danish Council for Independent Research| Natural Sciences and JST was supported by NRF Incentive Funding and Sub-Committee B (Stellenbosch University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Boardman.

Ethics declarations

Conflict of interest

L Boardman, J. Sørensen, V. Kostal, P. Simek and J. Terblanche have no conflict of interest to declare.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent and ethical approval was not required for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boardman, L., Sørensen, J.G., Koštál, V. et al. Chilling slows anaerobic metabolism to improve anoxia tolerance of insects. Metabolomics 12, 176 (2016). https://doi.org/10.1007/s11306-016-1119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1119-1

Keywords

Navigation