Skip to main content
Log in

The CD39-adenosinergic axis in the pathogenesis of renal ischemia–reperfusion injury

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Hypoxic injury occurs when the blood supply to an organ is interrupted; subsequent reperfusion halts ongoing ischemic damage but paradoxically leads to further inflammation. Together this is termed ischemia–reperfusion injury (IRI). IRI is inherent to organ transplantation and impacts both the short- and long-term outcomes of the transplanted organ. Activation of the purinergic signalling pathway is intrinsic to the pathogenesis of, and endogenous response to IRI. Therapies targeting the purinergic pathway in IRI are an attractive avenue for the improvement of transplant outcomes and the basis of ongoing research. This review aims to examine the role of adenosine receptor signalling and the ecto-nucleotidases, CD39 and CD73, in IRI, with a particular focus on renal IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADO:

Adenosine

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

cAMP:

3′-5′-Cyclic adenosine monophosphate

EC:

Endothelial cells

ENT1:

Equilibrative nucleoside transporter 1

HIF:

Hypoxia inducible factor

IP:

Ischemic preconditioning

IRI:

Ischemia–reperfusion injury

NPP:

Nucleotide pyrophosphatase/phosphodiesterase

PD-1:

Programmed death-1

PTC:

Proximal tubule cells

S1P1R:

Sphingosine-1-phosphate receptors

SK-1:

Sphingosine kinase-1

Treg:

Regulatory T cells

References

  1. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95(3):269–280

    Article  PubMed  CAS  Google Scholar 

  2. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  PubMed  CAS  Google Scholar 

  3. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci USA 106(30):12489–12493

    Article  PubMed  CAS  Google Scholar 

  4. Riegel A-K, Faigle M, Zug S, Rosenberger P, Robaye B, Boeynaems J-M et al (2011) Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117(8):2548–2555

    Article  PubMed  CAS  Google Scholar 

  5. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC et al (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362–366

    Article  PubMed  CAS  Google Scholar 

  6. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A et al (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795

    Article  PubMed  CAS  Google Scholar 

  7. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  PubMed  CAS  Google Scholar 

  8. Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS et al (2005) Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 288(5):F1032–F1043

    Article  PubMed  CAS  Google Scholar 

  9. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic signal 2(2):361–370

    Article  PubMed  CAS  Google Scholar 

  10. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta Mol Basis Dis 1638(1):1–19

    Article  CAS  Google Scholar 

  11. Yap SC, Lee HT (2012) Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens 21(1):24–32

    Article  PubMed  CAS  Google Scholar 

  12. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665

    Article  PubMed  CAS  Google Scholar 

  13. Downey JM, Liu GS, Thornton JD (1993) Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 27(1):3–8

    Article  PubMed  CAS  Google Scholar 

  14. Bauerle JD, Grenz A, Kim JH, Lee HT, Eltzschig HK (2011) Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 22(1):14–20

    Article  PubMed  CAS  Google Scholar 

  15. Lee HT, Emala CW (2000) Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol 278(3):F380–F387

    PubMed  CAS  Google Scholar 

  16. Lee HT, Gallos G, Nasr SH, Emala CW (2004) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia–reperfusion injury in mice. J Am Soc Nephrol 15(1):102–111

    Article  PubMed  CAS  Google Scholar 

  17. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW (2004) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286(2):F298–F306

    Article  PubMed  CAS  Google Scholar 

  18. Park SW, Kim M, Kim JY, Brown KM, Haase VH, D’Agati VD, et al. (2012) Proximal tubule sphingosine kinase-1 has a critical role in A(1) adenosine receptor-mediated renal protection from ischemia. Kidney Int 82:878-891 (Jun 13)

    Google Scholar 

  19. Park SW, Kim JY, Ham A, Brown KM, Kim M, D’Agati VD, et al. (2012) A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia reperfusion injury. Am J Physiol Renal Physiol. Jul 3

  20. Gill A, Wortham K, Costa D, Davis W, Ticho B, Whalley E (2009) Protective effect of tonapofylline (BG9928), an adenosine A1 receptor antagonist, against cisplatin-induced acute kidney injury in rats. Am J Nephrol 30(6):521–526

    Article  PubMed  CAS  Google Scholar 

  21. Lee HT, Jan M, Bae SC, Joo JD, Goubaeva FR, Yang J et al (2006) A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal Physiol 290(6):F1367–F1375

    Article  PubMed  CAS  Google Scholar 

  22. Hu S, Dong H, Zhang H, Wang S, Hou L, Chen S et al (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res 1459:81–90

    Article  PubMed  CAS  Google Scholar 

  23. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265

    Article  PubMed  CAS  Google Scholar 

  24. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(Suppl 1):S457–S464

    PubMed  CAS  Google Scholar 

  25. Day YJ, Huang L, Ye H, Li L, Linden J, Okusa MD (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176(5):3108–3114

    PubMed  CAS  Google Scholar 

  26. Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ et al (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111(17):2190–2197

    Article  PubMed  CAS  Google Scholar 

  27. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203(12):2639–2648

    Article  PubMed  CAS  Google Scholar 

  28. Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV et al (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5(6):e137

    Article  PubMed  Google Scholar 

  29. Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E et al (2012) Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 122(2):693–710

    Article  PubMed  CAS  Google Scholar 

  30. Chouker A, Ohta A, Martignoni A, Lukashev D, Zacharia LC, Jackson EK et al (2012) In vivo hypoxic preconditioning protects from warm liver ischemia–reperfusion injury through the adenosine A2B receptor. Transplantation 94(9):894–902

    Article  PubMed  CAS  Google Scholar 

  31. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20(13):2242–2250

    Article  PubMed  CAS  Google Scholar 

  32. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK et al (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110(7):993–1002

    PubMed  CAS  Google Scholar 

  33. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C et al (2005) HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202(11):1493–1505

    Article  PubMed  CAS  Google Scholar 

  34. Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK (2011) Hypoxia-inducible factor-1alpha-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J Immunol 186(7):4367–4374

    Article  PubMed  CAS  Google Scholar 

  35. Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171

    Article  PubMed  CAS  Google Scholar 

  36. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C et al (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115(12):1581–1590

    Article  PubMed  CAS  Google Scholar 

  37. Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA et al (2012) Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18(5):774–782

    Article  PubMed  CAS  Google Scholar 

  38. Koeppen M, Harter PN, Bonney S, Bonney M, Reithel S, Zachskorn C et al (2012) Adora2b signaling on bone marrow derived cells dampens myocardial ischemia–reperfusion injury. Anesthesiology 116(6):1245–1257

    Article  PubMed  CAS  Google Scholar 

  39. Methner C, Schmidt K, Cohen MV, Downey JM, Krieg T (2010) Both A2a and A2b adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. Am J Physiol Heart Circ Physiol 299(4):H1262–H1264

    Article  PubMed  CAS  Google Scholar 

  40. Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86(3):901–940

    Article  PubMed  CAS  Google Scholar 

  41. Lee HT, Ota-Setlik A, Xu H, D’Agati VD, Jacobson MA, Emala CW (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 284(2):F267–F273

    PubMed  CAS  Google Scholar 

  42. Crikis S, Lu B, Murray-Segal LM, Selan C, Robson SC, D’Apice AJ et al (2010) Transgenic overexpression of CD39 protects against renal ischemia–reperfusion and transplant vascular injury. Am J Transplant 10(12):2586–2595

    Article  PubMed  CAS  Google Scholar 

  43. Lu B, Rajakumar SV, Robson SC, Lee EK, Crikis S, d’Apice AJ et al (2008) The impact of purinergic signaling on renal ischemia−reperfusion injury. Transplantation 86(12):1707–1712

    Article  PubMed  CAS  Google Scholar 

  44. Sun X, Imai M, Nowak-Machen M, Guckelberger O, Enjyoji K, Wu Y et al (2011) Liver damage and systemic inflammatory responses are exacerbated by the genetic deletion of CD39 in total hepatic ischemia. Purinergic Signal 7(4):427–434

    Article  PubMed  CAS  Google Scholar 

  45. Eltzschig HK, Köhler D, Eckle T, Kong T, Robson SC, Colgan SP (2009) Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113(1):224–232

    Article  PubMed  CAS  Google Scholar 

  46. Guckelberger O, Sun XF, Sévigny J, Imai M, Kaczmarek E, Enjyoji K et al (2004) Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia−reperfusion injury. Thrombo Haemo 91(3):576–586

    CAS  Google Scholar 

  47. Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY et al (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia–reperfusion injury. FASEB J 21(11):2863–2873

    Article  PubMed  CAS  Google Scholar 

  48. Hart ML, Gorzolla IC, Schittenhelm J, Robson SC, Eltzschig HK (2010) SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. J Immunol 184(7):4017–4024

    Article  PubMed  CAS  Google Scholar 

  49. Dwyer KM, Robson SC, Nandurkar HH, Campbell DJ, Gock H, Murray-Segal LJ et al (2004) Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest 113(10):1440–1446

    PubMed  CAS  Google Scholar 

  50. Rajakumar SV, Lu B, Crikis S, Robson SC, d’Apice AJF, Cowan PJ et al (2010) Deficiency or inhibition of CD73 protects in mild kidney ischemia–reperfusion injury. Transplantation 90(12):1260–1264. doi:10.097/TP.0b013e3182003d9b

    Article  PubMed  CAS  Google Scholar 

  51. Cai M, Huttinger ZM, He H, Zhang W, Li F, Goodman LA et al (2011) Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol 51(6):927–935

    Article  PubMed  CAS  Google Scholar 

  52. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ et al (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52(5):958–961

    Article  PubMed  CAS  Google Scholar 

  53. Pommey S, Lu B, McRae J, Stagg J, Hill P, Salvaris E, et al. (2012) Liver grafts from CD39-overexpressing mice are protected from ischemia reperfusion injury due to reduced numbers of resident CD4(+) T cells. Hepatology Jul 24. doi: 10.1002/hep.25985.

    Google Scholar 

  54. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC (2008) CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 142(4):627–637

    Article  PubMed  CAS  Google Scholar 

  55. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia–reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82(4):412–427

    Article  PubMed  CAS  Google Scholar 

  56. Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC et al (2004) Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200(11):1395–1405

    Article  PubMed  CAS  Google Scholar 

  57. Zernecke A, Bidzhekov K, Ozuyaman B, Fraemohs L, Liehn EA, Luscher-Firzlaff JM et al (2006) CD73/ecto-5′-nucleotidase protects against vascular inflammation and neointima formation. Circulation 113(17):2120–2127

    Article  PubMed  CAS  Google Scholar 

  58. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111(4):2024–2035

    Article  PubMed  CAS  Google Scholar 

  59. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC et al (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104(13):3986–3992

    Article  PubMed  CAS  Google Scholar 

  60. Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188(8):1433–1443

    Article  PubMed  CAS  Google Scholar 

  61. Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, Köhle C et al (2007) Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18(3):833–845

    Article  PubMed  CAS  Google Scholar 

  62. Hart ML, Much C, Grozolla IC, Schittenhelm J, Kloor D, Stahl GL et al (2008) Extracellular adenosine production by Ecto-5-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135:1739–1750

    Article  PubMed  CAS  Google Scholar 

  63. Narravula S, Lennon PF, Mueller BU, Colgan SP (2000) Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 165(9):5262–5268

    PubMed  CAS  Google Scholar 

  64. Kiss J, Yegutkin GG, Koskinen K, Savunen T, Jalkanen S, Salmi M (2007) IFN-beta protects from vascular leakage via up-regulation of CD73. Eur J Immunol 37(12):3334–3338

    Article  PubMed  CAS  Google Scholar 

  65. Jian R, Sun Y, Wang Y, Yu J, Zhong L, Zhou P (2012) CD73 protects kidney from ischemia–reperfusion injury through reduction of free radicals. APMIS 120(2):130–138

    Article  PubMed  CAS  Google Scholar 

  66. Rittiner JE, Korboukh I, Hull-Ryde EA, Jin J, Janzen WP, Frye SV et al (2012) The nucleotide AMP is an adenosine A1 receptor agonist. J Biol Chem 3:2012

    Google Scholar 

  67. Haller CA, Cui W, Wen J, Robson SC, Chaikof EL (2006) Reconstitution of CD39 in liposomes amplifies nucleoside triphosphate diphosphohydrolase activity and restores thromboregulatory properties. J Vasc Surg 43(4):816–823

    Article  PubMed  Google Scholar 

  68. Rabb H (2002) The T, cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int 61(6):1935–1946

    Article  PubMed  CAS  Google Scholar 

  69. Burne-Taney MJ, Yokota-Ikeda N, Rabb H (2005) Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. Am J Transplant 5(6):1186–1193

    Article  PubMed  Google Scholar 

  70. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112

    Article  PubMed  Google Scholar 

  71. Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP et al (2001) Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108(9):1283–1290

    PubMed  CAS  Google Scholar 

  72. Yokota N, Burne-Taney M, Racusen L, Rabb H (2003) Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia–reperfusion injury. Am J Physiol Renal Physiol 285(2):F319–F325

    PubMed  CAS  Google Scholar 

  73. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950

    Article  PubMed  CAS  Google Scholar 

  74. Bonner F, Borg N, Burghoff S, Schrader J (2012) Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One 7(4):e34730

    Article  PubMed  Google Scholar 

  75. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232

    Article  PubMed  CAS  Google Scholar 

  76. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol 177(10):6780–6786

    PubMed  CAS  Google Scholar 

  77. Kinsey GR, Huang L, Jaworska K, Khutsishvili K, Becker DA, Ye H, et al. (2012) Autocrine adenosine signaling promotes regulatory T cell-Mediated Renal Protection. J Am Soc Nephrol 23:1528-1537 (Jul 26).

    Google Scholar 

  78. Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H et al (2009) Regulatory T cells suppress innate immunity in kidney ischemia–reperfusion injury. J Am Soc Nephrol 20(8):1744–1753

    Article  PubMed  CAS  Google Scholar 

  79. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199

    Article  PubMed  CAS  Google Scholar 

  80. Kinsey GR, Huang L, Vergis AL, Li L, Okusa MD (2010) Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int 77(9):771–780

    Article  PubMed  CAS  Google Scholar 

  81. Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Satpute SR et al (2009) Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76(7):717–729

    Article  PubMed  CAS  Google Scholar 

  82. Singh M, Shah T, Khosla K, Singh P, Molnar J, Khosla S et al (2012) Safety and efficacy of intracoronary adenosine administration in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Ther Adv Cardiovasc Dis 6(3):101–114

    Article  PubMed  Google Scholar 

  83. Mentzer RM Jr, Birjiniuk V, Khuri S, Lowe JE, Rahko PS, Weisel RD et al (1999) Adenosine myocardial protection: preliminary results of a phase II clinical trial. Ann Surg 229(5):643–649, discussion 9–50

    Article  PubMed  Google Scholar 

  84. Menasché P, Jamieson WRE, Flameng W, Michael KD (1995) Acadesine: a new drug that may improve myocardial protection in coronary artery bypass grafting: results of the first international multicenter study. J Thorac Cardiovasc Surg 110(4, Part 1):1096–1106

    Article  PubMed  Google Scholar 

  85. Matot I, Jurim O (2001) The protective effect of acadesine on lung ischemia–reperfusion injury. Anesth Analg 92(3):590–595

    Article  PubMed  CAS  Google Scholar 

  86. Mangano DT, Miao Y, Tudor IC, Dietzel C (2006) Post-reperfusion myocardial infarction: long-term survival improvement using adenosine regulation with acadesine. J Am Coll Cardiol 48(1):206–214

    Article  PubMed  Google Scholar 

  87. Mangano DT (1997) Effects of acadesine on myocardial infarction, stroke, and death following surgery. A meta-analysis of the 5 international randomized trials. The Multicenter Study of Perioperative Ischemia (McSPI) Research Group. JAMA 277(4):325–332

    Article  PubMed  CAS  Google Scholar 

  88. Newman MF, Ferguson TB, White JA, Ambrosio G, Koglin J, Nussmeier NA et al (2012) Effect of adenosine-regulating agent acadesine on morbidity and mortality associated with coronary artery bypass grafting: the RED-CABG randomized controlled trial. JAMA 308(2):157–164

    Article  PubMed  CAS  Google Scholar 

  89. George TJ, Arnaoutakis GJ, Beaty CA, Shah AS, Conte JV, Halushka MK (2012) A novel method of measuring cardiac preservation injury demonstrates University of Wisconsin solution is associated with less ischemic necrosis than Celsior in early cardiac allograft biopsy specimens. J Heart Lung Transpl 31(4):410–418

    Article  Google Scholar 

  90. George TJ, Arnaoutakis GJ, Baumgartner WA, Shah AS, Conte JV (2011) Organ storage with University of Wisconsin solution is associated with improved outcomes after orthotopic heart transplantation. J Heart Lung Transpl 30(9):1033–1043

    Article  Google Scholar 

  91. Hoeger S, Lueg G, Tsagogiorgas C, Schneider M, Theisinger S, Theisinger B et al (2011) UW is superior compared with HTK after prolonged preservation of renal grafts. J Surg Res 170(1):e149–e157

    Article  PubMed  CAS  Google Scholar 

  92. Garcia-Gil FA, Serrano MT, Fuentes-Broto L, Arenas J, Garcia JJ, Guemes A et al (2011) Celsior versus University of Wisconsin preserving solutions for liver transplantation: postreperfusion syndrome and outcome of a 5-year prospective randomized controlled study. World J Surg 35(7):1598–1607

    Article  PubMed  Google Scholar 

  93. Rudd DM, Dobson GP (2011) Eight hours of cold static storage with adenosine and lidocaine (adenocaine) heart preservation solutions: toward therapeutic suspended animation. J Thorac Cardiovasc Surg 142(6):1552–1561

    Article  PubMed  CAS  Google Scholar 

  94. Rudd DM, Dobson GP (2011) Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery after 6 hours of cold static storage. J Thorac Cardiovasc Surg 141(4):1044–1055

    PubMed  Google Scholar 

  95. Veighey K, MacAllister RJ (2012) Clinical applications of remote ischemic preconditioning. Cardiol Res Pract 2012:9

    Google Scholar 

  96. Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T et al (1999) Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J Am Coll Cardiol 33(2):556–564

    Article  PubMed  CAS  Google Scholar 

  97. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ (2002) Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 283(1):H29–H37

    PubMed  CAS  Google Scholar 

  98. Philipp S, Yang X-M, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70(2):308–314

    Article  PubMed  CAS  Google Scholar 

  99. Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, Caglayan E et al (2012) Ischemic preconditioning for prevention of contrast medium–induced nephropathy/clinical perspective. Circulation 126(3):296–303

    Article  PubMed  CAS  Google Scholar 

  100. Ali ZA, Callaghan CJ, Lim E, Ali AA, Reza Nouraei SA, Akthar AM et al (2007) Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair. Circulation 116(11):I-98–I-105

    Article  Google Scholar 

  101. Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S et al (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116(16):1784–1794

    Article  PubMed  Google Scholar 

  102. Sugimoto S, Lin X, Lai J, Okazaki M, Das NA, Li W et al (2009) Apyrase treatment prevents ischemia–reperfusion injury in rat lung isografts. J Thorac Cardiovasc Surg 138(3):752–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Veena Roberts and Siddharth Rajakumar are supported by Kidney Health Australia, and Karen Dwyer is funded by Perpetual Philanthropic Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, V., Lu, B., Rajakumar, S. et al. The CD39-adenosinergic axis in the pathogenesis of renal ischemia–reperfusion injury. Purinergic Signalling 9, 135–143 (2013). https://doi.org/10.1007/s11302-012-9342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9342-3

Keywords

Navigation