Skip to main content
Log in

Performance of Non-coherent MFSK with Selection and Switched Diversity Over Hoyt Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A closed-form expression of cumulative distribution function (CDF) of the instantaneous signal to noise ratio (SNR) in Hoyt fading channel is derived. This CDF and associated formulas are then used to find out the error probability of non-coherent M-ary frequency shift keying with multichannel reception. Simple finite-range integral expression for the symbol error probability (SEP) with selection diversity is found through CDF method. Next, closed-form expressions of moment generating functions (MGF) are presented for the switched diversity case and SEP values are calculated using the derived MGFs. Some other performance parameters like, outage probability and average SNR with switched diversity, are provided. In addition, analytic frameworks are presented for calculation of optimum switching thresholds that ensure minimum outage probability or minimum SEP. The analysis is quite general in the sense that it covers switch and stay combining and Rayleigh fading as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gursoy, M. C. (2008). On the energy efficiency of orthogonal signaling. In Proceedings of IEEE international symposium on information theory (ISIT) (pp. 599–603). July 2008.

  2. Grayver E., Daneshrad B. (2001) A low-power all-digital FSK receiver for space applications. IEEE Transactions on Communications 49(5): 911–921

    Article  Google Scholar 

  3. Moon, S., & Kim, K. (2001). Performance of satellite communication system with FH-MFSK under various jamming environments. In Proceedings of IEEE military communications conference (MILCOM) (Vol.1, pp. 659–663), October 2001.

  4. Abouei J., Plataniotis K.N., Pasupathy S. (2011) Green modulations in energy-constrained wireless sensor networks. IET Communications 5(2): 240–251

    Article  MathSciNet  Google Scholar 

  5. Gursoy M.C., Poor H.V., Verdú S. (2006) On-off frequency-shift keying for wideband fading channels. EURASIP Journal of Wireless Communications and Networking 2006(98564): 1–15

    Article  Google Scholar 

  6. Yang W. -B., Yang T. C. (2006) M-ary frequency shift keying communications over an underwater acoustic channel: Performance comparison of data with models. Journal of the Acoustical Society of America 120(5): 2694–2701

    Article  Google Scholar 

  7. Jeong Y. K., Lee K. B. (2000) Performance analysis of wide-band M-ary FSK systems in Rayleigh fading channels. IEEE Transactions on Communications 48(12): 1983–1986

    Article  Google Scholar 

  8. Sackey, E. N. O. (2006). Performance evaluation of M-ary frequency shift keying radio modems via measurements and simulations. MS Thesis, Department of Electrical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden, September 2006.

  9. Zhang Q. T. (2002) Error performance of noncoherent MFSK with L-diversity on correlated fading channels. IEEE Transactions on Wireless Communications 1(3): 531–539

    Article  Google Scholar 

  10. Cheng, J., & Berger, T. (2003). Performance analysis for M-ary orthogonal FSK with hybrid selection/equal-gain combining over Nakagami fading channels. In Proceedings of IEEE vehicular technology conference (VTC) (Vol.4, pp. 2628–2632). April 2003.

  11. Simon M. K., Alouini M. -S. (2003) Probability of error for noncoherent M-ary orthogonal FSK with postdetection switched combining. IEEE Transactions on Communications 51(9): 1456–1462

    Article  Google Scholar 

  12. Annamalai A., Tellambura C. (2003) A moment-generating function (MGF) derivative-based unified analysis of incoherent diversity reception of M-ary orthogonal signals over independent and correlated fading channels. International Journal of Wireless Information Networks 10(1): 41–56

    Article  Google Scholar 

  13. Cao, L., Tao, M., & Kam, P. Y. (2007). Closed-form performance of MFSK signals with diversity reception over non-identical fading channels. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 740–745). March 2007.

  14. Radaydeh R. M., Matalgah M. M. (2008) Compact formulas for the average error performance of noncoherent M-ary orthogonal signals over generalized Rican, Nakagami-m, and Nakagami-q fading channels with diversity reception. IEEE Transactions on Communications 56(1): 32–38

    Article  Google Scholar 

  15. Hoyt R. S. (1947) Probability functions for the modulus and angle of the normal complex variate. Bell System Technical Journal 26: 318–359

    MathSciNet  Google Scholar 

  16. Tellambura C., Annamalai A., Bhargava V. K. (2001) Unified analysis of switched diversity systems in independent and correlated fading channels. IEEE Transactions on Communications 49(11): 1955–1965

    Article  Google Scholar 

  17. Ko Y.-C., Alouini M.-S., Simon M. K. (2000) Analysis and optimization of switched diversity systems. IEEE Transactions on Vehicular Technology 49(5): 1813–1831

    Article  Google Scholar 

  18. Yang H.-C., Alouini M.-S. (2003) Performance analysis of multibranch switched diversity systems. IEEE Transactions on Communications 51(5): 782–794

    Article  Google Scholar 

  19. Simon M. K., Alouini M. -S. (2004) Digital communication over fading channels. (2nd ed.). Wiley, New Jersey

    Book  Google Scholar 

  20. Gradshteyn I. S., Ryzhik I. M. (2007) Table of integrals, series and products. (7th ed.). Academic Press/Elsevier, San Diego

    MATH  Google Scholar 

  21. Simon M. K. (2002) Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. (1st ed.). Kluwer, Norwell

    MATH  Google Scholar 

  22. Abramowitz M., Stegun I. A. (1970) Handbook of mathematical functions with formulas, graphs, and mathematical tables. (9th ed.). Dover, New York

    Google Scholar 

  23. Simon M. K., Alouini M.-S. (2003) Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels. IEEE Transactions on Wireless Communications 2(4): 611–615

    Article  Google Scholar 

  24. Paris J. F. (2009) Nakagami-q (Hoyt) distribution function with applications. Electronics Letters 45(4): 210–2112

    Article  MathSciNet  Google Scholar 

  25. Youssef N., Wang C.-X., Pätzold M. (2005) A study on the second order statistics of Nakagami-Hoyt mobile fading channels. IEEE Transactions on Vehicular Technology 54(4): 1259–1265

    Article  Google Scholar 

  26. Radaydeh R. M. (2007) Average error performance of M-ary modulation schemes in Nakagami-q (Hoyt) fading channels. IEEE Communications Letters 11(3): 255–257

    Article  Google Scholar 

  27. Radaydeh R. M., Matalgah M. M. (2008) Non-coherent improved-gain diversity reception of binary orthogonal signals in Nakagami-q (Hoyt) mobile channels. IET Communications 2(2): 372–379

    Article  Google Scholar 

  28. Radaydeh R. M., Matalgah M. M. (2008) Average BER analysis for M-ary FSK signals in Nakagami-q (Hoyt) fading with noncoherent diversity combining. IEEE Transactions on Vehicular Technology 57(4): 2257–2267

    Article  Google Scholar 

  29. Fraidenraich G., Filho J. C. S. S., Yacoub M. D. (2005) Second-order statistics of maximal-ratio and equal-gain combining in Hoyt fading. IEEE Communications Lettrs 9(1): 19–21

    Google Scholar 

  30. Krstić, D., Nikolić, P., Stamenović, G., & Stefanović, D. (2009). Performance analysis of generalized selection combiner in the presence of Hoyt fading. In Proceedings of IEEE TELSIKS (pp. 599–602). October 2009.

  31. Haghani, S., & Beaulieu, N. C. (2005). Symbol error rate performance of M-ary NCFSK with S +  N selection combining in Rician fading. In Proceedings of IEEE international conference on communications (ICC) (Vol. 4, pp. 2500–2505). May 2005.

  32. Haghani S., Beaulieu N. C. (2006) M-ary NCFSK with S+N selection combining in Rician fading. IEEE Transactions on Communications 54(3): 491–498

    Article  Google Scholar 

  33. Zogas D. A., Karagiannidis G. K., Kotsopoulos S. A. (2004) On the average output SNR in selection combining with three correlated branches over Nakagami-m fading channels. IEEE Transactions on Wireless Communications 3(1): 25–28

    Article  Google Scholar 

  34. Hassan S. A., Ingram M. A. (2011) SNR estimation for M-ary non-coherent frequency shift keying systems. IEEE Transactions on Communications 59(10): 2786–2795

    Article  MathSciNet  Google Scholar 

  35. Chandra, A., Bose, C., & Bose, M. K. (2010). Outage probability and error rates of switched diversity systems in Hoyt fading channel. In Proceedings of IEEE INDICON, December 2010.

  36. Datta S. N., Bose C., Chandra A. (2007) Unified analysis of error performance for binary signalling over Rayleigh fading channels. Electronics Letters 43(17): 934–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, A., Bose, C. & Bose, M.K. Performance of Non-coherent MFSK with Selection and Switched Diversity Over Hoyt Fading Channel. Wireless Pers Commun 68, 379–399 (2013). https://doi.org/10.1007/s11277-011-0457-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0457-6

Keywords

Navigation