Skip to main content
Log in

Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A key constraint in successfully obtaining an effective inoculant is overcoming difficulties in formulating a viable and user-friendly final product and maintaining the microbial cells in a competent state. Co-cultures of rhizobia and PGPR (Plant Growth Promoting Rhizobacteria) are a logical next subject for formulation researchers as they can influence the efficacy of rhizobia. A greenhouse experiment was set to assess the formulation effect of one strain i.e. Bradyrhizobium japonicum, 532c (granules, liquid and broth) and also to determine the efficiency of co-inoculation of Bacillus with two commercial strains of B. japonicum (532c and RCR 3407) on 2 soybean (Glycine max L.) varieties. PCR–RFLP analysis was used to determine the nodule occupancy in each treatment. Most of the inoculants showed increased nodulation and biomass yields (by approximately 2–5 and 4–10 g plant−1 respectively) as compared to the uninoculated controls. TGx1740-2F showed no significant differences in nodule fresh weights for the formulation effect while the co-inoculants increased the nodule fresh weights by up to 4 g plant−1. The liquid and granule-based inoculants induced higher biomass yields (4–8 g plant−1) suggesting a possible impact of formulation on the effectiveness of the inoculants. The co-inoculants also gave higher yields but showing no significant differences to the rhizobial inoculants. Nodule occupancy was 100 % for the rhizobial inoculants as well as the co-inoculants emphasizing the infectivity and high competitiveness of 532c and RCR 3407 strains despite the high population of indigenous rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abaidoo RC, Keyser HH, Singleton PW, Dashiell KE, Sanginga N (2007) Population size, distribution and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl Soil Ecol 35:57–67

    Article  Google Scholar 

  • Abdullahi B, Karanja N, Murwira M, Lwimbi L, Abaidoo R, Giller K (2011) Production and use of rhizobial inoculants in Africa. www.N2Africa.org, 21 p

  • Amarger N, Mariotti A, Mariotti F (1977) Essai d’estimation du taux d’azote fixe symbiotiquement chez le lupin par le traçage isotopique naturel (15N). C R Acad Sci Ser D 284:2179–2182

    CAS  Google Scholar 

  • Bardin R, Domenach AM, Chalamet A (1977) Rapports isotopiques naturel de l’azote II. Application à la mesure de la fixation symbiotique de l’azote in situ. Rev Ecol Biol Soil 14:395–402

    CAS  Google Scholar 

  • Bationo A, Kimetu JI, Ikerra S, Kimani S, Mugendi D, Odendo M, Silver M, Swift MJ, Sanginga N (2004) The African network for soil biology and fertility: new challenges and opportunities. webapp.ciat.cgiar.org

  • Bloem JF, Staphorst JL (1998) Biological nitrogen fixation of soybean in South Africa. In: Boa D, Kimou A, Sankaré Y, Zakra N (eds) Actes de la 7ème Conférence de l’Association Africaine pour la Fixation Biologique de l’Azote (AABNF). Septembre 1996, Agronomie Africaine Numéro Spécial (1). AISA, Abidjan, pp 153–160

  • Brockwell J (1963) Accuracy of a plant–infection technique for counting populations of Rhizobium trifohi. Appl Microbiol 11:377–383

    CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Camacho M, Santamaria C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilising bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Elkoca E, Turan N, Figen Donmez M (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘elkoca-05’). J Plant Nutr 33(14):2104–2119

    Article  CAS  Google Scholar 

  • Ferreira MC, Hungria M (2002) Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crop Res 79:139–152

    Article  Google Scholar 

  • Food and Agricultural Organization (2006) World reference base for soil resources, a framework for international classification, correlation and communication, 2nd edn. Rome, Italy

    Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI publishing, UK

    Book  Google Scholar 

  • Guimarães AP, Morais RF, Urquiaga S, Boddey RM, Alves BJR (2008) Bradyrhizobium strain and the 15N natural abundance quantification of biological N2 fixation in soybean. Sci Agric 65:516–524

    Google Scholar 

  • Hansen AP (1994) Symbiotic N2 fixation of crop legumes: achievements and perspectives. Magraf Verlag, Weikersheim, p 248

    Google Scholar 

  • Hartley EJ, Gemmell LG, Slattery JF, Howieson JG, Herridge DF (2005) Age of peat-based lupin and chickpea inoculants in relating to quality and efficacy. Austr J Exp Agric 45:183–188

    Article  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Howieson J, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia—some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC, Graham PH (2006) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh N, Jaiwal PK (eds) Nitrogen nutrition and sustainable plant productivity. Studium Press, LLC, Houston, TX, pp 43–93

    Google Scholar 

  • Kellman AW (2008) Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.). PhD Thesis. Lincoln University Canterbury, New Zealand, pp 189–190

  • Krasova-Wade T, Ndoye I, Braconnier S, Sarr B, de Lajudie P, Neyra M (2003) Diversity of indigeneous Bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata (L.) Walp.) grown under limited and favorable water conditions in Senegal (West Africa). A. Afr J Biotechnol 2:13–22

    CAS  Google Scholar 

  • Lynch DH, Smith DL (1993) Soybean [Glycine max (L.) Merr.] nodulation and N fixation as affected by period of exposure to a low root zone temperature. Physiol Plant 88:212–220

    Article  CAS  Google Scholar 

  • Mabood F, Zhou X, Smith D (2006) Bradyrhizobium japonicum preincubated with methyl jasmonate increases soybean nodulation and nitrogen fixation. Agron J 98:289–294

    Article  Google Scholar 

  • Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MA, Garcia MB, Woelke MR, Okon Y, Dardanelli MS (2010) Plant growth promoting rhizobacteria improving the legume-rhizobia symbiosis. 2010. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Verlag/Wien, Berlin, pp 473–494

    Chapter  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  Google Scholar 

  • Okito A, Alves BJR, Urquiaga S, Boddey RM (2004) Isotopic fractionation during N2 fixation by four tropical legumes. Soil Biol Biochem 36:1179–1190

    Article  CAS  Google Scholar 

  • Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 6:300–309

    Google Scholar 

  • Ramos MLG, Parsons R, Sprent JI (2005) Differences in ureide and amino acid content of water stressed soybean inoculated with Bradyrhizobium japonicum and B. Elkanii. Pesq agropec bras Brasília 40(5):453–458

    Google Scholar 

  • Rice WA, Olsen PE (1992) Effects of inoculation method and size of Rhizobium meliloti population in the soil on nodulation of alfalfa. Can J Soil Sci 72:57–67

    Article  Google Scholar 

  • Sanginga N (2003) Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39

    Article  CAS  Google Scholar 

  • Sanginga N, Dashiell K, Diels J, Vanlauwe B, Lyasse O, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir A, Schulz S, Singh BB, Chikoye D, Keatinge D, Rodomiro O (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal-grain legume-livestock systems in the dry savanna. Agric Ecosyst Environ 100:305–314

    Article  Google Scholar 

  • Singleton PW, Tavares JS (1986) Inoculation response of legumes in relation to the number and ineffectiveness of indigenous Rhizobium populations. Appl Environ Microbiol 51:1013–1018

    CAS  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258

    Google Scholar 

  • Thuita M, Pypers P, Herrmann L, Okalebo R, Othieno C, Muema E, Lesueur D (2012) Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol Fertil Soils 48:87–96

    Article  Google Scholar 

  • Tsigie A, Tilak KVBR, Anil KS (2012) Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol Fertil Soils 47:971–974

    Article  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadish G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems ACIAR Monograph No 136, 258 p

  • Vessey JK (2004) Benefits of inoculating legume crops with Rhizobia in the northern great plains department of plant science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada Plant Management Network

  • Walley F, Clayton G, Gan Y, Lafond G (2004) Performance of rhizobial inoculant formulations in the field. Crop Manag. doi:10.1094/CM-2004-0301-03-RV

    Google Scholar 

  • Weaver RW, Frederick LR (1974) A new technique for most probable-number counts of rhizobia. Plant Soil 36:219–222

    Article  Google Scholar 

  • Woldeyohannes WH, Dasilva MC, Gueye M (2007) Nodulation and nitrogen fixation of Stylosanthes hamata in response to induced drought stress. Arid Land Res Manag 21:157–163

    Article  Google Scholar 

  • Woomer P, Singleton PW, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54:1112–1116

    CAS  Google Scholar 

  • Woomer PL, Okalebo JR, Sanchez PA (1997) Phosphorus replenishment in Western Kenya: from field experiments to an operational strategy. Afr Crop Sci Conf Proc 3:559–570

    Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Online. Crop Manag. doi:10.1094/CM-2004-0301-06-RV

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Bill and Melinda Gates Foundation through the Tropical Soil Biology and Fertility Institute of CIAT (TSBF-CIAT) project on commercial agricultural products (COMPRO). We gratefully acknowledge the contributions of Moses Thuita, Philip Malala, Martin Kimanthi, Purity Nduku and Magdalyne Mumo. Many thanks to Padma Somasegaran and Becker Underwood for providing the inoculants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Lesueur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atieno, M., Herrmann, L., Okalebo, R. et al. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum . World J Microbiol Biotechnol 28, 2541–2550 (2012). https://doi.org/10.1007/s11274-012-1062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1062-x

Keywords

Navigation