Skip to main content

Advertisement

Log in

Can a Single and Unique Cu Soil Quality Standard be Valid for Different Mediterranean Agricultural Soils under an Accumulator Crop?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The validity of the soil quality standard for copper (Cu) established by the Spanish legislation (Spanish Royal Decree 9/2005) is evaluated in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L. var. Romaine cv. Long Green), considering both the effect of the metal on crop growth (biomass production) and its accumulation in the edible part of the plant. For saline soils, such a soil quality standard seems not to be valid taking into account both of the aspects evaluated. For non-saline soils, the soil quality standard also seems not to be valid since, considering the metal accumulation in the edible part of the plant, the soil quality standard should be above such standard; but considering the productivity function of soil (biomass production), the standard should be much below, meaning that this function is being greatly affected by the presence of high concentrations of Cu. The soil quality standard for each soil considered should correspond to a value between its respective EC50 and EC10 values (effective concentrations of added Cu causing 50% and 10% inhibition on the biomass production), depending on the politicians and/or farmers' compromise with yield production and, therefore, with soil productivity. These threshold values were greater for the soil having more organic matter and clay content, showing that Cu toxicity also depends on these properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards as highlighted by the European Thematic Strategy for Soil Protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Petrella, F. (2002). Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere, 49, 545–557.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments. Biochemistry, bioavailability and risks of metals (3rd ed.). New York: Springer-Verlag.

    Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie.

    Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1993). Toxicity and risk assessment of environmental pollutants. In B. J. Alloway & D. C. Ayres (Eds.), Chemical principles of environmental pollution (pp. 44–58). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Andreu, V., & Gimeno Garcia, E. (1996). Total Content and extractable fraction of cadmium, cobalt, copper, nickel, lead and zinc in calcareous orchard soils. Communications in Soil Science and Plant Analysis, 27, 2633–2648.

    Article  Google Scholar 

  • Blum, W. E. H. (2002). Soil quality indicators based on soil functions. In J. L. Rubio, R. P. C. Morgan, S. Asins, & V. Andreu (Eds.), Proceedings of the Third International Congress of the European Society for Soil Conservation, Man and Soil at the Third Millennium (pp. 149–151). Logroño: Geoforma Ediciones.

    Google Scholar 

  • BOE (2005). Real Decreto 9/2005, de 14 de enero, por el que se establece la Relación de Actividades Potencialmente Contaminantes del Suelo y los Criterios y Estándares para la Declaración de Suelos Contaminados. Boletín Oficial del Estado BOE no. 15 de 18 de enero de 2005, Madrid.

  • Campos, E., Barahona, E., Lachica, M., & Mingorance, M. D. (1998). A study of the analytical parameters important for the sequential extraction procedure using microwave heating for Pb, Zn and Cu in calcareous soils. Analytica Chimica Acta, 369, 235–243.

    Article  CAS  Google Scholar 

  • Carrillo-González, R., Simunek, J., Sauvé, S., & Adriano, D. (2006). Mechanisms and pathways of trace element mobility in soils. Advances in Agronomy, 91, 111–178.

    Article  Google Scholar 

  • Castillo Torres, M., Carbonell Barres, E., Lacueva, M. V., Buendía Fuentes, A. (2009). Estimación de la incertidumbre de un análisis químico utilizando la sistemática de pares de valores. V Iberolab Congreso virtual Iberoamericana de Gestión de Calidad en Laboratorios.

  • Castro, E., Mañas, P., & De las Heras, J. (2009). A comparison of the application of different waste products to a lettuce crop: Effects on plant and soil properties. Scientia Horticulturae, 123, 148–155.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestión methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27, 1294–1300.

    Article  CAS  Google Scholar 

  • Coccossis, H. N. (1991). Historical land use changes: Mediterranean regions in Europe. In F. W. Brower, A. Thomas, & M. J. Chadwick (Eds.), Land use changes in Europe: Processes of change, environmental transformations and future patterns (pp. 441–461). Dortrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Codex (1998). Codex Alimentarius Commission, Joint FAO/WHO General Standard for Contaminants and Toxins in Foods.

  • Cuadrado, C., Kumpulainen, J., & Moreiras, O. (1995). Contaminants and nutrients in total diets in Spain. European Journal of Clinical Nutrition, 49, 767–778.

    CAS  Google Scholar 

  • Doner, H. E. (1978). Chloride as a factor in mobilities of Ni (II), Cu(II) and Cd (II) in soil. Soil Science Society of American Journal, 42, 882–885.

    Article  CAS  Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran et al. (Eds.), Defining soil quality for a sustainable environment (pp. 3–22) SSSA Spec. Publ. 35. Madison: SSSA and ASA.

    Google Scholar 

  • Dufault, R. J., Ward, B., & Hassell, R. L. (2009). Dynamic relationships between field temperatures and romaine lettuce yield and head quality. Scientia Hortticulturae, 120, 45–459.

    Google Scholar 

  • EC. (2002). Communication of 16 April 2002 from the Commission to the Council, the European Parliament, the Economic and the Social Committee and the Committee of the Regions: Towards a Thematic Strategy for Soil Protection. Brussels: European Commission (EC).

    Google Scholar 

  • EURACHEM. (2000). Quantifying uncertainty in analytical measurement (2nd ed.). Helsinki: EURACHEM Workshop.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Gharbi, F., Rejeb, S., Ghorbai, M. H., & Morel, J. L. (2005). Plant response to copper toxicity as affected by plant species and soil type. Journal of Plant Nutrition, 28, 379–392.

    Article  CAS  Google Scholar 

  • Groom, C., Parker, J., & Teller, A. (1995). Agriculture. In D. Stanners & P. Bourdeau (Eds.), Europe's environment. The Dobris Assessment (pp. 447–463). Copenhagen: European Environment Agency (EEA).

    Google Scholar 

  • Haanstra, L., Doelman, P., & Oude Voshaar, J. H. (1985). The use of sigmoidal dose response curves in soil ecotoxicological search. Plant and Soil, 84, 293–297.

    Article  CAS  Google Scholar 

  • Herzig, R., Korhammer, S., Kumpulainen, J., Muntau, H., & Quevauviller, Ph. (2001). The certification of the contents (mass fractions) of As, B, Ba, Cd, Cu, Fe, Hg, Mo, Ni, Sb, Sr, Tl and Zn in white cabbage (BCR-679). EUR 19777 EN. Luxembourg: European Commission, Reference materials, BCR Information.

  • Hinojosa, M. B., Carreira, J. A., Rodriguez-Maroto, J. M., & Garcia-Ruiz, R. (2008). Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model. Science of the Total Environment, 396, 89–99.

    Article  CAS  Google Scholar 

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348.

    Article  CAS  Google Scholar 

  • ISO/DIS 19258. (2005). Soil quality. Guidance on the determination of background values. Switzerland: International Standard Organisation (ISO).

    Google Scholar 

  • Jiménez, R. (1998). Comportamiento del suelo ante procesos de contaminación. In Terceras Jornadas de Suelos Contaminados (pp. 41–56). Ministerio de Medio Ambiente, Madrid.

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169, 101–123.

    Article  CAS  Google Scholar 

  • Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of American Journal, 61, 4–10.

    Article  CAS  Google Scholar 

  • Kim, H. J., Fonseca, J. M., Choi, J. H., Kubota, K., & Kwon, Y. K. (2008). Salt in irrigation water affects the nutritional and visual properties of Romaine lettuce (Lactuca sativa L.). Journal of Agricultural and Food Chemistry, 56, 3772–3776.

    Article  CAS  Google Scholar 

  • Konstantopoulou, E., Kapotis, G., Petrpoulos, S. A., Karapanos, I. C., & Passam, H. C. (2010). Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Scientia Horticulturae, 125, 93.e1–93.e5.

    Article  Google Scholar 

  • López-Arias, M., & Grau-Corbí, J. M. (2004). Metales pesados, materia orgánica y otros parámetros de la capa superficial de los suelos agrícolas y de pastos de la España peninsular. II. Madrid: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Educación y Ciencia.

    Google Scholar 

  • López-Mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: Heavy metal levels in the soil and plants. Resources, Conservation and Recycling, 30, 95–109.

    Article  Google Scholar 

  • MAPA. (1994). Métodos oficiales de análisis de suelos y aguas para riegos. Tomo III. Madrid: Servicio de Publicaciones del Ministerio de Agricultura, Pesca y Alimentación.

    Google Scholar 

  • Maroto, A., Riu, J., Boqué, R., & Rius, F. X. (1999). Estimating uncertainties of analytical results using information from the validation process. Analytica Chimica Acta, 391, 173–185.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients—food safety issues. Field Crops Research, 60, 143–163.

    Article  Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. L. (2000). A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.

    Article  CAS  Google Scholar 

  • Micó, C. (2005). Estudio de metales pesados en suelos con cultivos hortícolas de la provincia de Alicante. PhD Thesis. Universitat de València. Valencia, Spain.

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  Google Scholar 

  • Micó, C., Peris, M., Recatalá, L., & Sánchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean Region. Science of the Total Environmental, 378, 13–17.

    Article  Google Scholar 

  • Micó, C., Li, H. F., Zhao, F. J., & McGrath, S. P. (2008). Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environmental Pollution, 156, 883–890.

    Article  Google Scholar 

  • Miner, G. S., Gutierrez, R., & King, L. D. (1997). Soil factors affecting plant concentrations of cadmium, copper and zinc on sludge-amended soils. Journal of Environmental Quality, 26, 989–994.

    Article  CAS  Google Scholar 

  • Mitsios, I. K., & Golia, E. E. (2005). Heavy metal concentrations in soils and irrigation waters in Thessaly region, Central Greece. Communications in Soil Science and Plant Analysis, 36, 487–501.

    Article  CAS  Google Scholar 

  • Mohamed, I., Ahamadou, B., Li, M., Gong, C. X., Cai, P., Liang, W., et al. (2010). Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials. Journal of Soils and Sediments, 10, 973–982.

    Article  CAS  Google Scholar 

  • OECD (2006). OECD guidelines for the testing of chemicals. Section 2: effects on biotic systems test no. 208: Terrestrial plant test: Seedling emergence and seedling growth test. OECD.

  • Pérez, L., Moreno, A. M., & González, J. (2000). Valoración de la calidad de un suelo en función del contenido y disponibilidad de metales pesados. Edafología, 7(3), 113–120.

    Google Scholar 

  • Pérez, C., Martínez, M. J., Vidal, J., & Navarro, C. (2002). Proposed reference values for heavy metals in Calcaric Fluvisols of the Huerta de Murcia (SE Spain). In A. Faz , R. Ortiz, & A. R. Mermut (Eds.) Proceedings of the International Symposium on Sustainable Use and Management of Soils in Arid and Semiarid Regions (pp 495–496). Cartagena, Murcia, Spain

  • Peris, M. (2005). Estudio de metales pesados en suelos bajo cultivos hortícolas de la provincia de Castellón. PhD Thesis. Universitat de València. Valencia, Spain

  • Peris, M., Micó, C., Recatalá, L., Sánchez, R., & Sánchez, J. (2007). Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Science of the Total Environment, 378, 42–48.

    Article  CAS  Google Scholar 

  • Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean Region. Water, Air, and Soil Pollution, 192, 25–37.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph., Muntau, H., Fortunati, U., & Vercoutere, K. (1996). The certification of the total content (mass fractions) of Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn and the aqua regia soluble contents (mass fractions) of Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn in a calcareous loam soil (BCR-141R). EUR 16890 EN. Luxembourg: European Commission, Reference Materials, BCR Information.

    Google Scholar 

  • Ramos, I., Esteban, E., Lucena, J. J., & Garate, A. (2002). Cadmium uptake and subcellullar distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Science, 162, 761–767.

    Article  CAS  Google Scholar 

  • Recatalá, L., Micó, C., Sánchez, J., & Boluda, R. (2001). Approaches for characterising contaminated sites: An analysis considering the role of soil. In Y. Villacampa, C. A. Brebbia, & J. L. Usó (Eds.), Ecosystems and sustainable development (pp. 347–356). Southampton: Wessex Institute of Technology.

    Google Scholar 

  • Recatalá, L., Micó, C., Peris, M., Sáez, E., & Sánchez, J. (2002). Analysis of heavy metals in mediterranean soils (Alicante, Spain) for soil quality policy making. In A. Faz , R. Ortiz, & A. R. Mermut (Eds.), Proceedings of the International Symposium on Sustainable Use and Management of Soils in Arid and Semiarid Regions (pp. 318–320). Cartagena, Murcia, Spain

  • Recatalá, L., Peris, M., Micó, C., Sánchez, R., & Sánchez, J. (2004). Analysis of heavy metals in agricultural soils (Castellón, Spain). In A. Faz , R. Ortiz, & G. García (Eds.), Proceedings of the Fourth International Conference on Land Degradation (pp. 325–326) Cartagena, Murcia, Spain

  • Recatalá, L., Micó, C., Abelo, C. D., Navarro, J., & Sánchez, J. (2008). Testing the usefulness of using a generic reference level for Cu for risk assessment in Mediterranean agricultural soils. In W. E. H. Blum, M. H. Gerzabek, & M. Vodrazka (Eds.), Book of abstracts of the EUROSOIL 2008 (pp. 318–320) Vienna, Austria

  • Recatalá, L., Segura, M., Pastor, A., Murillo, R., & Sánchez, J. (2009). Cambios de usos del suelo, procesos de desertificación, impactos ambientales e implicaciones en la calidad ambiental a nivel municipal. Capítulo 6. In Recatalá (Dir.). Indicadores e Índices Integrados en la Agenda 21 Local para la Evaluación de la Calidad Ambiental en Áreas Afectadas por Desertificación del Ámbito Mediterráneo. Valencia: CIDE-Centro de Investigaciones sobre Desertificación, Universitat de València, Fundación Biodiversidad.

  • Recatalá, L., Sánchez, J., Arbelo, C., & Sacristán, D. (2010). Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop. Science of the Total Environment, 409, 9–18.

    Article  Google Scholar 

  • Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb, and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875.

    Article  CAS  Google Scholar 

  • Rooney, C. P., Zhao, F. J., & McGrath, S. P. (2006). Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environmental Toxicology and Chemistry, 25, 726–732.

    Article  CAS  Google Scholar 

  • Ross, S. M. (1994). Toxic metals in soil–plant systems. ChisChester: John Wiley & Sons.

    Google Scholar 

  • Sánchez, R. (2005). Caracterización de metales pesados en suelos agrícolas bajo cultivos hortícolas de la provincia de Valencia. Valencia: Trabajo de Investigación de Doctorado. CIDE-Centro de Investigaciones sobre Desertificación (CSIC, Universitat de València, Generalitat Valenciana).

    Google Scholar 

  • Sánchez, J., Recatalá, L., Micó, C., & Peris, M. (2004). Contenido de metales pesados en suelos agrícolas y su influencia en cultivos hortícolas. Valencia: Informe Anual de Proyecto. CIDE-Centro de Investigaciones sobre Desertificación (CSIC, Universitat de València, Generalitat Valenciana).

    Google Scholar 

  • Shannon, M. C., & Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78, 5–38.

    Article  CAS  Google Scholar 

  • Singh, B. (2001). Heavy metals in soils: Sources, chemical reactions and forms, In D. Smith, S. Fityus, & M. Allman (Eds.), Proceedings of the 2nd Australia and New Zealand Conference on Environment Geotechnics (pp. 77–93). Newcastle, NSW, Australia

  • Soler-Rovira, P., Madejon, E., Madejon, P., & Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.

    Article  CAS  Google Scholar 

  • SSSA. (1995). SSA statement on soil quality. Agronomy News. June 7. Madison: Soil Science Society of America.

    Google Scholar 

  • Tack, F. M. G., Verloo, M. G., Vanmechelen, L., & Van Ranst, E. (1997). Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Science of the Total Environment, 201, 113–23.

    Article  CAS  Google Scholar 

  • Tóth, G., Montanarella, L., Stolboboy, V., Máté, F., Bódis, K., Jones, A., et al. (2008). Soils of the European Union. European Commission. Joint Research Centre. Institute for Environment and Sustainability. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • USEPA. (1996). Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices. Revision 0. Washington: U.S. Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (1998). Method 3051A. Microwave assisted acid digestion of sediments, sludges, soils and oils. Revision 1. Washington: U.S. Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (2007). Ecological soil screening levels for copper. Washington: Interim Final. U.S. Environmental Protection Agency (USEPA).

    Google Scholar 

  • Vega, F. A., Andrade, M. L., & Covelo, E. F. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 174, 522–533.

    Article  CAS  Google Scholar 

  • Wang, X. L., Sato, T., Xing, B. S., & Tao, S. (2005). Health risks of heavy metals to the general public of Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350, 28–37.

    Article  CAS  Google Scholar 

  • WRB. (2006). World reference base for soil resources. A framework for international classification, correlation and communication. World soil resources report 103. Second edition. IUSS Working Group WRB. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Science and Innovation for funding the research project CGL-2006-07250/BTE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Recatalá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recatalá, L., Sacristán, D., Arbelo, C. et al. Can a Single and Unique Cu Soil Quality Standard be Valid for Different Mediterranean Agricultural Soils under an Accumulator Crop?. Water Air Soil Pollut 223, 1503–1517 (2012). https://doi.org/10.1007/s11270-011-0960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0960-0

Keywords

Navigation