Skip to main content
Log in

Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

There is no consensus on a comprehensive classification for green infrastructure (GI). This is a consequence of the diversity of disciplines, application contexts, methods, terminologies, purposes and valuation criteria for which a GI typology is required. The aim of this systematic literature review is to evaluate the existing evidence on how GI is being categorised and characterised worldwide. We reviewed a total of 85 studies from 15 countries that were analysed for contextual trends, methods, parameters and typologies. Results show that relevant literature lacks a common terminology and that a universal typology for all scenarios is impractical. Analysis reveals that GI can be organised into four main GI categories: (a) tree canopy, (b) green open spaces, (c) green roofs and (d) vertical greenery systems (facades/walls). Green open spaces and tree canopy attracted the attention of researchers due to their complexity, variability and important roles in GI planning. Evidence suggests that a ternary approach in terms of the functional (purpose, use, services), structural (morphology) and configurational (spatial arrangements) attributes of GI should be applied for a more comprehensive classification. Although this approximation is inherently generic, since it can be used across different research disciplines, it is also sufficiently specific to be implemented for individual scopes, scenarios and settings. Further research is needed to develop a typology capable of responding to particular research aims and performance analyses based upon the findings discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abunnasr YF (2013) Climate change adaptation: a green infrastructure planning framework for resilient urban regions (PhD). University of Massachusetts Amherst

  • Ahern J (1995) Greenways as a planning strategy. Landsc Urban Plan 33(1-3):131–155. doi:10.1016/0169-2046(95)02039-V

    Article  Google Scholar 

  • Ahern J (2007) Green infrastructure for cities: the spatial dimension. In: Novotny V, Brown P (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishing, London

    Google Scholar 

  • Aldous DE (2014) Australia’s national classification system for green open space. Australas Parks Leis 16(2):30–33

    Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data: geological survey professional paper 964

  • Arlt G, Hennersdorf J, Lehmann I, Thinh NX (eds) (2005) IÖR-Schriften. Auswirkungen städtischer Nutzungsstrukturen auf Grünflächen und Grünvolumen. Impact of city’s structures of land use on green spaces and green volume, 47th edn. Dresden

  • Bell S, Montarzino A, Travlou P (2007) Mapping research priorities for green and public urban space in the UK. Urban For Urban Green 6(2):103–115. doi:10.1016/j.ufug.2007.03.005

    Article  Google Scholar 

  • Benedict MA, McMahon ET (2002) Green infrastructure: smart conservation for the 21st century

  • Benedict MA, McMahon ET (2006) Green infrastructure: linking landscapes and communities. Island Press

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010a) How effective is ‘greening’ of urban areas in reducing human exposure to ground level ozone concentrations, UV exposure and the ‘urban heat island effect’?: CEE review 08-004 (SR41). Environmental evidence

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010a) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97(3):147–155

    Article  Google Scholar 

  • Brady RF, Tobias T, Eagles PF, Ohrner R, Micak J, Veale B, Dorney RS (1979) A typology for the urban ecosystem and its relationship to larger biogeographical landscape units. Urban Ecol 4(1):11–28. doi:10.1016/0304-4009(79)90020-2

    Article  Google Scholar 

  • Byrne J, Sipe N (2010) Green and open space planning for urban consolidation - a review of the literature and best practice (No. 11). Brisbane

  • Cadenasso ML, Pickett S, Schwarz K (2007) Spatial heterogeneity in urban ecosystems:: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88

  • Cadenasso ML, Pickett STA, McGrath B, Marshall V (2013) Ecological heterogeneity in urban ecosystems: reconceptualized land cover models as a bridge to urban design. In: Pickett S, Cadenasso ML, McGrath B (eds) Resilience in ecology and urban design. Linking theory and practice for sustainable cities. Springer, New York

    Google Scholar 

  • Cheltenham Borough Council (CBC) (2008) Green space audit-final report. Worcestershire, UK

  • Christchurch City Council (CCC) (2010) Public open space strategy 2010-2040. New Zealand

  • Cooper LM (2010) Network analysis in CEA, ecosystem services assessment and green space planning. Impact Assess Proj Apprais 28(4):269–278. doi:10.3152/146155110X12838715793048

    Article  Google Scholar 

  • Coutts AM, Tapper NJ, Beringer J, Loughnan M, Demuzere M (2012) Watering our cities: the capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog Phys Geogr 37(1):2–28. doi:10.1177/0309133312461032

    Article  Google Scholar 

  • Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ (2015) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol. doi:10.1007/s00704-015-1409-y

    Google Scholar 

  • Davies C, MacFarlane R, McGloin, C, Roe M (2006) Green infrastructure planning guide. North-East community forests, Durham, Marea Britanie. Retrieved from https://www.scribd.com/doc/55042694/Green-Infrastructure-Guide-Project-Davies-Et-Al-2006. Accessed Monday, March 30, 2015

  • Davis M (2010) Green infrastructure In-Depht case analysis.: theme 7: mapping for planning. Task 4.1: In-depth case analysis – green infrastructure implementation and efficiency – ENV.B.2./SER/2010/0059

  • Davis M, Ramírez F, Vallejo AL (2015) Vertical gardens as swamp coolers. Proc Eng 118:145–159. doi:10.1016/j.proeng.2015.08.413

    Article  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408. doi:10.1016/S0921-8009(02)00089-7

    Article  Google Scholar 

  • DEFRA (2008) Case study to develop tools and methodologies to deliver an ecosystem-based approach - Thames gateway green grids. Research Project Final Report. UK

  • Department for Transport, Local Government and the Regions (DTLR) (2002) Green spaces, better places: final report of the urban green spaces taskforce. London

  • Di Gregorio A, Jansen LJM (eds) (1998) Land Cover Classification System (LCCS): classification concepts and user manual. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • Dobbs C, Escobedo FJ, Zipperer WC (2011) A framework for developing urban forest ecosystem services and goods indicators. Landsc Urban Plan 99(3–4):196–206. doi:10.1016/j.landurbplan.2010.11.004

    Article  Google Scholar 

  • Dunnett N, Kingsbury N (2004) Planting green roofs and living walls. Timber Press, Portland

    Google Scholar 

  • Dunnett N, Swanwick C, Woolley H (2002) Improving urban parks, play areas, and open space.: urban research report. London

  • East Midlands Development Agency (EMDA) (2010) A guide and toolkit. Green Infrastructure.: playind an important role in achieving sustainable economic growth. Nottingham

  • Ely M, Pitman S (2014) Green Infrastructure: LIFE support for human habitats. The compelling evidence for incorporating nature into urban environments: Green Infrastructure Evidence Base 2014. Green Infrastructure Project, Botanic Gardens of South Australia. South Australia

  • English Nature (2003) Providing accessible natural greenspaces in towns and cities: a practical guide to assessing the resources and implementing local standards for provision. UK

  • European Environment Agency (EEA) (2011) Green infrastructure and territorial cohesion.: the concept of green infrastructure and its integration into policies using monitoring systems. EEA Technical report No. 18/2011

  • Foster J, Lowe A. Winkelman S (2011) The value of green infrastructure for urban climate adaptation

  • Francis RA, Lorimer J (2011) Urban reconciliation ecology: the potential of living roofs and walls. J Environ Manag 92(6):1429–1437. doi:10.1016/j.jenvman.2011.01.012

    Article  Google Scholar 

  • Gill S, Handley J, Ennos A, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environment 33(1):115–133

  • Hawken S, Metternicht G, Chang C, Liew S, Gupta A (eds) (2014) Remote sensing of urban ecological infrastructure in Desakota environments: A review of current approaches. : 35th Asian conference on remote sensing (ACRS 2014)

  • Höfle B, Hollaus M (2010) Urban vegetation detection using high density full-waveform Airborne Lidar Data -: combination of object-based image and point cloud analysis, XXXVIII, Part 7B, 281–286

  • Hunter A, Livesley SJ, Williams NSG (2012) Literature review. Responding to the urban heat island: a review of the potential of green infrastructure. Report funded by the Victorian Centre for Climate Change Adaptation (VCCCAR). Melbourne, Australia

  • Hunter AM, Williams NS, Rayner JP, Aye L, Hes D, Livesley SJ (2014) Quantifying the thermal performance of green façades: a critical review. Ecol Eng 63:102–113. doi:10.1016/j.ecoleng.2013.12.021

    Article  Google Scholar 

  • Jacobs B, Mikhailovich N, Delaney C (2014) Benchmarking Australia’s urban tree canopy: an i-Tree assessment.: Final Report. Prepared for Horticulture Australia Limited. Sydney

  • Jim CY (1989) Tree-canopy characteristics and urban development in Hong Kong. Geogr Rev 79(2):210–225

    Article  Google Scholar 

  • Jim CY (2015) Greenwall classification and critical design-management assessments. Ecol Eng 77:348–362. doi:10.1016/j.ecoleng.2015.01.021

    Article  Google Scholar 

  • Jim C, Chen SS (2003) Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landsc Urban Plan 65(3):95–116. doi:10.1016/S0169-2046(02)00244-X

    Article  Google Scholar 

  • Keeley M (2011) The green area ratio: an urban site sustainability metric. J Environ Plan Manag 54(7):937–958. doi:10.1080/09640568.2010.547681

    Article  Google Scholar 

  • Khan KS, Kunz R, Kleijnen J, Antes G (2003) Systematic reviews to support evidence-based medicine. Royal Society of Medicine Press Ltd., London

    Google Scholar 

  • Kontoleon KJ, Eumorfopoulou EA (2010) The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Build Environ 45(5):1287–1303. doi:10.1016/j.buildenv.2009.11.013

    Article  Google Scholar 

  • La Rosa D, Privitera R (2013) Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landsc Urban Plan 109(1):94–106. doi:10.1016/j.landurbplan.2012.05.012

    Article  Google Scholar 

  • Landscape Institute (2009) Green Infrastructure connected and multifunctional landscapes.: Position Statement

  • Lehmann S (2014) Low carbon districts: mitigating the urban heat island with green roof infrastructure. City Cult Soc 5(1):1–8. doi:10.1016/j.ccs.2014.02.002

    Article  Google Scholar 

  • Lehmann I, Mathey J, Rößler S, Bräuer A, Goldberg V (2014) Urban vegetation structure types as a methodological approach for identifying ecosystem services – Application to the analysis of micro-climatic effects. Ecol Indic 42:58–72. doi:10.1016/j.ecolind.2014.02.036

    Article  Google Scholar 

  • Li F, Wang R, Paulussen J, Liu X (2005) Comprehensive concept planning of urban greening based on ecological principles: a case study in Beijing, China. Landsc Urban Plan 72(4):325–336. doi:10.1016/j.landurbplan.2004.04.002

    Article  Google Scholar 

  • Liu T, Yang X (2013) Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens Environ 133:251–264. doi:10.1016/j.rse.2013.02.020

    Article  Google Scholar 

  • Liu K, Gao W, Gu X, Gao Z (eds) (2013) The relation between the urban heat island effect and the underlying surface LUCC of meteorological stations. Source of the Document Proceedings of SPIE - The International Society for Optical Engineering 8869 - 88690R

  • Llewelyn-Davies (2000) Urban design compendium 1. English Partnerships & The Housing Corporation, London

    Google Scholar 

  • Llewelyn-Davies Planning (1992) Open space planning in London. The Committee, London (UK)

    Google Scholar 

  • Mathey J, Rößler S, Lehmann I, Bräuer A (2010). Urban green spaces: potentials and constraints for urban adaptation to climate change. Resilient Cities, Local Sustainability Volume 1, 2011, pp 479–485, Volume 1, 479

  • Mathey J, Rößler S, Lehmann I, Bräuer A, Goldberg V, Kurbjuhn C, Westbeld A (eds) (2011) Naturschutz und Biologische Vielfalt Vol. 111. Noch wärmer, noch trockener? Stadtnatur und Freiraumstrukturenim Klimawandel.: Even warmer, even drier? Urban nature and green spacedevelopment under climate change. Bundesamt für Naturschutz (Bfn. Ed.), Bonn-Bad Godesberg

    Google Scholar 

  • Mazza L, Bennett G, Nocker L, de Gantioler S, Losarcos L, Margerison C, van Diggelen R (2011) Green infrastructure implementation and efficiency: final report for the European commission, DG environment on contract ENV.B.2/SER/2010/0059. Institute for European Environmental Policy, Brussels and London

  • Mell IC (2008) Green infrastructure: concepts and planning. FORUM E journal - Newcastle University (8) 69–80

  • Mell IC (2010) Green infrastructure: concepts, perceptions and its use in spatial planning (PhD). Newcastle University, UK

    Google Scholar 

  • Mell IC (2014) Aligning fragmented planning structures through a green infrastructure approach to urban development in the UK and USA. Urban For Urban Green 13(4):612–620. doi:10.1016/j.ufug.2014.07.007

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, Friday, June 12, 2015

    Google Scholar 

  • Naumann S, Davis M, Kaphengst T, Pieterse M, Rayment M (2011) Design, implementation and cost elements of green infrastructure projects.: final report to the European Commission, DG Environment. Contract no. 070307/2010/577182/ETU/F.1

  • Norton B, Coutts A, Livesley S, Williams N (2013) Technical report. Decision principles for the selection and placement of Green infrastructure: technical report

  • Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NS (2015) Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138. doi:10.1016/j.landurbplan.2014.10.018

    Article  Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10)

  • Ochoa JM (1999) La vegetacion como instrumento para el control microclimatico (PhD). Universitat Politecnica de Catalunya, Barcelona

    Google Scholar 

  • Office of Environment and Heritage (OEH) (2015) Urban green cover. Technical guidelines

  • Office of the Deputy Prime Minister. (2002a) Assessing needs and opportunities a companion guide to PPG17

  • Office of the Deputy Prime Minister (2002b) Planning policy guidance 17: planning for open space, sport and recreation

  • Oke TR (2006) Towards better scientific communication in urban climate. Theor Appl Climatol 84(1–3):179–190. doi:10.1007/s00704-005-0153-0

    Article  Google Scholar 

  • Oke TR (ed) (2009) The need to establish protocols in urban heat island work. 8th symposium on urban environments

  • Oke TR, Crowther JM, McNaughton KG, Monteith JL, Gardiner B (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B 324:335–349, Tuesday, August 25, 2015

    Article  Google Scholar 

  • Ottelé M, Perini K, Fraaij A, Haas EM, Raiteri R (2011) Comparative life cycle analysis for green façades and living wall systems. Energy Build 43(12):3419–3429. doi:10.1016/j.enbuild.2011.09.010

    Article  Google Scholar 

  • Panduro TE, Veie KL (2013) Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc Urban Plan 120:119–128. doi:10.1016/j.landurbplan.2013.08.009

    Article  Google Scholar 

  • Pauleit S, Duhme F (2000) Assessing the environmental performance of land cover types for urban planning. Landsc Urban Plan 52(1):1–20. doi:10.1016/S0169-2046(00)00109-2

    Article  Google Scholar 

  • Pauleit S, Slinn P, Handley J, Lindley S (2003) Promoting the natural greenstructure of towns and cities: English nature’s accessible natural greenspace standards model. Built Environ 29(2):157–170

    Article  Google Scholar 

  • Pérez G, Rincón L, Vila A, González JM, Cabeza LF (2011a) Behaviour of green facades in Mediterranean continental climate. Energy Convers Manag 52(4):1861–1867. doi:10.1016/j.enconman.2010.11.008

    Article  Google Scholar 

  • Pérez G, Rincón L, Vila A, González JM, Cabeza LF (2011b) Green vertical systems for buildings as passive systems for energy savings. Appl Energy 88(12):4854–4859. doi:10.1016/j.apenergy.2011.06.032

    Article  Google Scholar 

  • Pérez G, Coma J, Martorell I, Cabeza LF (2014) Vertical Greenery Systems (VGS) for energy saving in buildings: a review. Renew Sust Energ Rev 39:139–165. doi:10.1016/j.rser.2014.07.055

    Article  Google Scholar 

  • Perini K, Ottelé M, Fraaij A, Haas EM, Raiteri R (2011) Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ 46(11):2287–2294. doi:10.1016/j.buildenv.2011.05.009

    Article  Google Scholar 

  • Peters EB., Hiller RV, McFadden JP (2011) Seasonal contributions of vegetation types to suburban evapotranspiration. J Geophys Res 116(G1). doi:10.1029/2010JG001463

  • Pickering C, Byrne J (2013) The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High Educ Res Dev 33(3):534–548. doi:10.1080/07294360.2013.841651

    Article  Google Scholar 

  • Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol : J Soc Conserv Biol 20(6):1647–1656. doi:10.1111/j.1523-1739.2006.00485.x

    Article  Google Scholar 

  • Rupprecht CD, Byrne JA, Garden JG, Hero J-M (2015) Informal urban green space: a trilingual systematic review of its role for biodiversity and trends in the literature. Urban For Urban Green 14(4):883–908. doi:10.1016/j.ufug.2015.08.009

    Article  Google Scholar 

  • Schilling J, Logan J (2008) Greening the rust belt: a green infrastructure model for right sizing America’s shrinking cities. J Am Plan Assoc 74(4):451–466

    Article  Google Scholar 

  • Sheate W, Eales R, Day E, Baker J, Murdoch A, Hill C,. . . Karpouzoglou T (2012) Spatial representation and specification of Ecosystem Services: A Methodology using land use/land cover data and stakeholder Engagement. J Environ Assess Policy Manag 14(01), 1250001. doi:10.1142/S1464333212500019

  • Stewart ID, Oke TR (eds) (2009) Newly developed “thermal climate zones” for defining and measuring urban heat island “magnitude” in the canopy layer. T.R. Oke Symposium & 8th Symposium on Urban Environment. USA January 11–15

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900. doi:10.1175/BAMS-D-11-00019.1

    Article  Google Scholar 

  • Susorova I (2015) Green facades and living walls: vertical vegetation as a construction material to reduce building cooling loads. In: Pacheco-Torgal F, Labrincha JA, Cabeza LF, Granqvist C-G (eds) Eco-efficient materials for mitigating building cooling needs: design, properties and applications. Woodhead Publishing, p 127–153. Thursday, March 31, 2016

  • TEP (2005) East Midlands green infrastructure scoping study. Final report: prepared for East Midlands regional assembly and partners

  • The Mersey Forest (2010) Liverpool green infrastructure strategy: technical document. Version 1.0. Liverpool, UK

  • The Mersey Forest (2011) The value of mapping green infrastructure. London

  • The Scottish Government (TSG) (2008) Planning advice note: PAN 65 planning and open Space. UK

  • Tooke TR, Coops NC, Goodwin NR, Voogt JA (2009) Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens Environ 113(2):398–407. doi:10.1016/j.rse.2008.10.005

    Article  Google Scholar 

  • Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc Urban Plan 81(3):167–178. doi:10.1016/j.landurbplan.2007.02.001

    Article  Google Scholar 

  • United States Geological Survey (USGS) (1992) Multi-resolution land characteristics. Retrieved from http://www.mrlc.gov/. Accessed Sunday, December 20, 2015

  • United States Geological Survey (USGS) (2003) National land cover classification. Retrieved from http://landcover.usgs.gov/usgslandcover.php. Accessed Sunday, December 20, 2015

  • Victorial Environmental Assessment Council (VEAC) (2011) Metropolitan Melbourne investigation final report. East Melbourne, Vic

  • Wang X-J (2001) Type, quantity and layout of urban peripheral green space. J For Res 12(1):67–70

    Article  Google Scholar 

  • Williams N, Rayner JP, Raynor KJ (2010) Green roofs for a wide brown land: opportunities and barriers for rooftop greening in Australia. Urban For Urban Green 9(3):245–251. doi:10.1016/j.ufug.2010.01.005

    Article  Google Scholar 

  • Williamson KS (2003) Growing with green infrastructure

  • Wilmers F (1988) Green for melioration of urban climate. Energy Build 11(1–3):289–299. doi:10.1016/0378-7788(88)90045-X

    Article  Google Scholar 

  • Wong KK (2011) Urban open space system in northern Kowloon Peninsula: an emerging green infrastructure network in Hong Kong. Asian Geogr 27(1–2):13–28. doi:10.1080/10225706.2010.9684150

    Google Scholar 

  • Wong N-H, Chen Y (2010) The role of urban Greenery. In: Ng E (ed) High-density cities. The Role of Urban Greenery, p 227–262

  • Wong N-H, Kwang Tan AY, Chen Y, Sekar K, Tan PY,. . . Wong NC (2010) Thermal evaluation of vertical greenery systems for building walls. Build Environ 45(3), 663–672. doi:10.1016/j.buildenv.2009.08.005

  • Woolley H (2006) Urban open spaces. Spon Press & Taylor and Francis Group, London & New York

    Google Scholar 

  • Young R, Zanders J, Lieberknecht K, Fassman-Beck E (2014) A comprehensive typology for mainstreaming urban green infrastructure. J Hydrol 519:2571–2583. doi:10.1016/j.jhydrol.2014.05.048

    Article  Google Scholar 

  • Zhou W, Troy A (2009) Development of an object-based framework for classifying and inventorying human-dominated forest ecosystems. Int J Remote Sens 30(23):6343–6360. doi:10.1080/01431160902849503

    Article  Google Scholar 

  • Zhou W, Cadenasso M, Schwarz K, Pickett S (2014) Quantifying spatial heterogeneity in urban landscapes: integrating visual interpretation and object-based classification. Remote Sens 6(4):3369–3386. doi:10.3390/rs6043369

    Article  Google Scholar 

Download references

Acknowledgments

This paper is part of an ongoing research conducted at the Australian Graduate School of Urbanism, University of New South Wales (UNSW-Australia) and the Node of Excellence – Cooperative Research Centre for Low Carbon Living (CRC-LCL). This research is possible thanks to the financial support of the Graduate Research School –UNSW (University International Postgraduate Award - UIPA) and the CRC for Low Carbon Living (Top-up scholarship). The authors sincerely thank the anonymous reviewers for their valuable suggestions and comments that contributed to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bartesaghi Koc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartesaghi Koc, C., Osmond, P. & Peters, A. Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosyst 20, 15–35 (2017). https://doi.org/10.1007/s11252-016-0578-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0578-5

Keywords

Navigation