Skip to main content
Log in

Growth of Ag and Au Nanoparticles on Reduced and Oxidized Rutile TiO2(110) Surfaces

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The nucleation and growth of Au and Ag nanoparticles on rutile TiO2(110)–(1 × 1) surfaces in different oxidation states is studied by means of photoelectron spectroscopy (PES) and scanning tunneling microscopy (STM). Au and Ag nanoparticles were found to bind much more strongly to oxidized TiO2(110) model supports than to reduced TiO2(110) surfaces, as directly revealed by STM. Detailed PES studies addressing small Au and Ag particles complete this picture and show that the PES core level spectra acquired on Au/TiO2(110) and Ag/TiO2(110) can be best described by fitting with two binding energy (BE) components. Particularly for coverages in the sub-monolayer regime and for depositions at low temperatures (100 K) the PES core level spectra must be fitted with at least two BE components. The higher BE component is attributed to atoms at the interface between the metal clusters and the TiO2(110) support. For Au/TiO2(110), the two BE components were evident in the core level spectra for higher coverage than for Ag/TiO2(110), consistent with different growth modes for Au (initially 2D) and Ag (3D) on TiO2(110). Finally, strong evidence for charge transfer from Ag nanoparticles to the TiO2(110) support is presented, whereas the charge transfer between Au nanoparticles and the TiO2(110) support is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bäumer M, Freund HJ (1999) Prog Surf Sci 61:127

    Article  Google Scholar 

  2. Campbell CT (2004) Science 306:234

    Article  CAS  Google Scholar 

  3. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  4. Fu Q, Wagner T (2007) Surf Sci Rep 62:431

    Article  CAS  Google Scholar 

  5. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  6. Henderson MA (2011) Surf Sci Rep 66:185

    Article  CAS  Google Scholar 

  7. Kamat PV (2002) J Phys Chem B 106:7729

    Article  CAS  Google Scholar 

  8. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  9. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    Article  CAS  Google Scholar 

  10. Bond GC, Thompson DT (2000) Gold Bull 33:41

    Article  CAS  Google Scholar 

  11. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  12. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403

    Article  CAS  Google Scholar 

  13. Lee SS, Fan CY, Wu TP, Anderson SL (2004) J Am Chem Soc 126:5682

    Article  CAS  Google Scholar 

  14. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981

    Article  CAS  Google Scholar 

  15. Herranz T, Deng XY, Cabot A, Alivisatos P, Liu Z, Soler-Illia G, Salmeron M (2009) Catal Today 143:158

    Article  CAS  Google Scholar 

  16. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  17. Meyer R, Lemire C, Shaikhutdinov SK, Freund H (2004) Gold Bull 37:72

    Article  CAS  Google Scholar 

  18. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2007) Science 315:1692

    Article  CAS  Google Scholar 

  19. Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Angew Chem Int Ed 46:1329

    Article  CAS  Google Scholar 

  20. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331

    Article  CAS  Google Scholar 

  21. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  22. Chen MS, Goodman DW (2006) Catal Today 111:22

    Article  CAS  Google Scholar 

  23. Haruta M, Daté M (2001) Appl Catal A Gen 222:427

    Article  CAS  Google Scholar 

  24. Haruta M (2004) Gold Bull 37:27

    Article  CAS  Google Scholar 

  25. Molina LM, Rasmussen MD, Hammer B (2004) J Chem Phys 120:7673

    Article  CAS  Google Scholar 

  26. Janssens TVW, Clausen BS, Hvolbaek B, Falsig H, Christensen CH, Bligaard T, Nørskov JK (2007) Top Catal 44:15

    Article  CAS  Google Scholar 

  27. Green IX, Tang WJ, Neurock M, Yates JT Jr (2011) Science 333:736

    Article  CAS  Google Scholar 

  28. Fujita T, Guan PF, McKenna K, Lang XY, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Erlebacher J, Chen MW (2012) Nature Mater 11:775

    Article  CAS  Google Scholar 

  29. Lin X, Yang B, Benia HM, Myrach P, Yulikov M, Aumer A, Brown MA, Sterrer M, Bondarchuk O, Kieseritzky E, Rocker J, Risse T, Gao HJ, Nilius N, Freund HJ (2010) J Am Chem Soc 132:7745

    Article  CAS  Google Scholar 

  30. Okazaki K, Ichikawa S, Maeda Y, Haruta M, Kohyama M (2005) Appl Catal A Gen 291:45

    Article  CAS  Google Scholar 

  31. Sanchez A, Abbet S, Heiz U, Schneider WD, Häkkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573

    Article  CAS  Google Scholar 

  32. Wörz AS, Heiz U, Cinquini F, Pacchioni G (2005) J Phys Chem B 109:18418

    Article  CAS  Google Scholar 

  33. Ricci D, Bongiorno A, Pacchioni G, Landman U (2006) Phys Rev Lett 97:036106

    Article  CAS  Google Scholar 

  34. Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298

    Article  CAS  Google Scholar 

  35. Giorgio S, Cabié M, Henry CR (2008) Gold Bull 41:167

    Article  CAS  Google Scholar 

  36. Guzman J, Gates BC (2004) J Am Chem Soc 126:2672

    Article  CAS  Google Scholar 

  37. Fu L, Wu NQ, Yang JH, Qu F, Johnson DL, Kung MC, Kung HH, Dravid VP (2005) J Phys Chem B 109:3704

    Article  CAS  Google Scholar 

  38. Concepción P, Carrettin S, Corma A (2006) Appl Catal A Gen 307:42

    Article  CAS  Google Scholar 

  39. Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) Surf Interface Anal 38:215

    Article  CAS  Google Scholar 

  40. Wang JG, Hammer B (2006) Phys Rev Lett 97:136107

    Article  CAS  Google Scholar 

  41. Wang JG, Hammer B (2007) Top Catal 44:49

    Article  CAS  Google Scholar 

  42. Veith GM, Lupini AR, Dudney NJ (2009) J Phys Chem C 113:269

    Article  CAS  Google Scholar 

  43. Brown MA, Fujimori Y, Ringleb F, Shao X, Stavale F, Nilius N, Sterrer M, Freund HJ (2011) J Am Chem Soc 133:10668

    Article  CAS  Google Scholar 

  44. Boccuzzi F, Chiorino A (2000) J Phys Chem B 104:5414

    Article  CAS  Google Scholar 

  45. Schumacher B, Plzak V, Kinne M, Behm RJ (2003) Catal Lett 89:109

    Article  CAS  Google Scholar 

  46. Willneff EA, Braun S, Rosenthal D, Bluhm H, Hävecker M, Kleimenov E, Knop-Gericke A, Schlögl R, Schroeder SLM (2006) J Am Chem Soc 128:12052

    Article  CAS  Google Scholar 

  47. Zhang L, Persaud R, Madey TE (1997) Phys Rev B 56:10549

    Article  CAS  Google Scholar 

  48. Lai X, St Clair TP, Valden M, Goodman DW (1998) Prog Surf Sci 59:25

    Article  CAS  Google Scholar 

  49. Parker SC, Grant AW, Bondzie VA, Campbell CT (1999) Surf Sci 441:10

    Article  CAS  Google Scholar 

  50. Cosandey F, Madey TE (2001) Surf Rev Lett 8:73

    Article  CAS  Google Scholar 

  51. Chusuei CC, Lai X, Luo K, Goodman DW (2001) Top Catal 14:71

    Article  Google Scholar 

  52. Howard A, Clark DNS, Mitchell CEJ, Egdell RG, Dhanak VR (2002) Surf Sci 518:210

    Article  CAS  Google Scholar 

  53. Kim TS, Stiehl JD, Reeves CT, Meyer RJ, Mullins CB (2003) J Am Chem Soc 125:2018

    Article  CAS  Google Scholar 

  54. Minato T, Susaki T, Shiraki S, Kato HS, Kawai M, Aika KI (2004) Surf Sci 566:1012

    Article  CAS  Google Scholar 

  55. Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341

    Article  CAS  Google Scholar 

  56. Okazawa T, Kohyama M, Kido Y (2006) Surf Sci 600:4430

    Article  CAS  Google Scholar 

  57. Rodriguez JA, Evans J, Graciani J, Park JB, Liu P, Hrbek J, Sanz JF (2009) J Phys Chem C 113:7364

    Article  CAS  Google Scholar 

  58. Porsgaard S, Jiang P, Borondics F, Wendt S, Liu Z, Bluhm H, Besenbacher F, Salmeron M (2011) Angew Chem Int Ed 50:2266

    Article  CAS  Google Scholar 

  59. Dumbuya K, Cabailh G, Lazzari R, Jupille J, Ringel L, Pistor M, Lytken O, Steinrück HP, Gottfried JM (2012) Catal Today 181:20

    Article  CAS  Google Scholar 

  60. Bao X, Muhler M, Pettinger B, Schlögl R, Ertl G (1993) Catal Lett 22:215

    Article  CAS  Google Scholar 

  61. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224

    Article  CAS  Google Scholar 

  62. Nagy A, Mestl G (1999) Appl Catal A Gen 188:337

    Article  CAS  Google Scholar 

  63. de Oliveira AL, Wolf A, Schüth F (2001) Catal Lett 73:157

    Article  Google Scholar 

  64. Litter MI (1999) Appl Catal B Environ 23:89

    Article  CAS  Google Scholar 

  65. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Appl Catal B Environ 42:187

    Article  CAS  Google Scholar 

  66. Hirakawa T, Kamat PV (2005) J Am Chem Soc 127:3928

    Article  CAS  Google Scholar 

  67. Hu C, Lan YQ, Qu JH, Hu XX, Wang AM (2006) J Phys Chem B 110:4066

    Article  CAS  Google Scholar 

  68. Elahifard MR, Rahimnejad S, Haghighi S, Gholami MR (2007) J Am Chem Soc 129:9552

    Article  CAS  Google Scholar 

  69. Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A 189:258

    Article  CAS  Google Scholar 

  70. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676

    Article  CAS  Google Scholar 

  71. Xu C, Lai X, Zajac GW, Goodman DW (1997) Phys Rev B 56:13464

    Article  CAS  Google Scholar 

  72. Diebold U (2003) Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  73. Thompson TL, Yates JT Jr (2006) Chem Rev 106:4428

    Article  CAS  Google Scholar 

  74. Pang CL, Lindsay R, Thornton G (2008) Chem Soc Rev 37:2328

    Article  CAS  Google Scholar 

  75. Wendt S, Vang RT, Besenbacher F (2009) In: Vaysieres L (ed) On Solar Hydrogen & Nanotechnology. Wiley, New York, p 467

    Google Scholar 

  76. Dohnálek Z, Lyubinetsky I, Rousseau R (2010) Prog Surf Sci 85:161

    Article  CAS  Google Scholar 

  77. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598:226

    Article  CAS  Google Scholar 

  78. Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Lægsgaard E, Besenbacher F, Hammer B (2006) Phys Rev Lett 96:066107

    Article  CAS  Google Scholar 

  79. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B, Besenbacher F (2008) Science 320:1755

    Article  CAS  Google Scholar 

  80. Lira E, Hansen JØ, Huo P, Bechstein R, Galliker P, Lægsgaard E, Hammer B, Wendt S, Besenbacher F (2010) Surf Sci 604:1945

    Article  CAS  Google Scholar 

  81. Lira E, Huo P, Hansen JØ, Rieboldt F, Bechstein R, Wei YY, Streber R, Porsgaard S, Li Z, Lægsgaard E, Wendt S, Besenbacher F (2012) Catal Today 182:25

    Article  CAS  Google Scholar 

  82. Tong X, Benz L, Kolmakov A, Chretien S, Metiu H, Buratto SK (2005) Surf Sci 575:60

    Article  CAS  Google Scholar 

  83. Luo K, St Clair TP, Lai X, Goodman DW (2000) J Phys Chem B 104:3050

    Article  CAS  Google Scholar 

  84. Chen DA, Bartelt MC, Seutter SM, McCarty KF (2000) Surf Sci 464:L708

    Article  CAS  Google Scholar 

  85. Benz L, Tong X, Kemper P, Lilach Y, Kolmakov A, Metiu H, Bowers MT, Buratto SK (2005) J Chem Phys 122:081102

    Article  CAS  Google Scholar 

  86. Nilius N, Ernst N, Freund H (2001) Chem Phys Lett 349:351

    Article  CAS  Google Scholar 

  87. Besenbacher F, Lauritsen JV, Wendt S (2007) Nano Today 2:30

    Article  Google Scholar 

  88. Besenbacher F, Lauritsen JV, Linderoth TR, Lægsgaard E, Vang RT, Wendt S (2009) Surf Sci 603:1315

    Article  CAS  Google Scholar 

  89. Hansen JØ, Lira E, Galliker P, Wang J-G, Sprunger PT, Li Z, Lægsgaard E, Wendt S, Hammer B, Besenbacher F (2010) J Phys Chem C 114:16964

    Article  CAS  Google Scholar 

  90. Kitsudo Y, Iwamoto A, Matsumoto H, Mitsuhara K, Nishimura T, Takizawa M, Akita T, Maeda Y, Kido Y (2009) Surf Sci 603:2108

    Article  CAS  Google Scholar 

  91. Lee S, Fan CY, Wu TP, Anderson SL (2005) Surf Sci 578:5

    Article  CAS  Google Scholar 

  92. Lægsgaard E, Besenbacher F, Mortensen K, Stensgaard I (1988) J Microsc 152:663

    Article  Google Scholar 

  93. Lauritsen JV, Besenbacher F (2006) Adv Catal 50:97

    CAS  Google Scholar 

  94. Prunier J, Domenichini B, Li Z, Møller PJ, Bourgeois S (2007) Surf Sci 601:1144

    Article  CAS  Google Scholar 

  95. Kurtz RL, Stockbauer R, Madey TE, Román E, de Segovia JL (1989) Surf Sci 218:178

    Article  CAS  Google Scholar 

  96. Zhang ZM, Jeng SP, Henrich VE (1991) Phys Rev B 43:12004

    Article  CAS  Google Scholar 

  97. Lira E, Wendt S, Huo P, Hansen JØ, Streber R, Porsgaard S, Wei YY, Bechstein R, Lægsgaard E, Besenbacher F (2011) J Am Chem Soc 133:6529

    Article  CAS  Google Scholar 

  98. Mitsuhara K, Kitsudo Y, Matsumoto H, Visikovskiy A, Takizawa M, Nishimura T, Akita T, Kido Y (2010) Surf Sci 604:548

    Article  CAS  Google Scholar 

  99. Borodin A, Reichling M (2011) Phys Chem Chem Phys 13:15442

    Article  CAS  Google Scholar 

  100. Mróz S, Jankowski Z (1995) Surf Sci 322:133

    Article  Google Scholar 

  101. Jacobsen J, Nielsen LP, Besenbacher F, Stensgaard I, Lægsgaard E, Rasmussen T, Jacobsen KW, Nørskov JK (1995) Phys Rev Lett 75:489

    Article  CAS  Google Scholar 

  102. Vickerman JC (2009) Surface Analysis: The principal techniques. Wiley, Chichester

    Book  Google Scholar 

  103. Powell CJ, Jablonski A NIST Electron Inelastic-Mean-Free-Path Database, Version 11

  104. Madsen GKH, Hammer B (2009) J Chem Phys 130:044704

    Article  CAS  Google Scholar 

  105. Woicik JC, Nelson EJ, Kronik L, Jain M, Chelikowsky JR, Heskett D, Berman LE, Herman GS (2002) Phys Rev Lett 89:077401

    Article  CAS  Google Scholar 

  106. Wertheim GK, DiCenzo SB, Youngquist SE (1983) Phys Rev Lett 51:2310

    Article  CAS  Google Scholar 

  107. Wertheim GK, DiCenzo SB, Buchanan DNE (1986) Phys Rev B 33:5384

    Article  CAS  Google Scholar 

  108. Weaver JF, Hoflund GB (1994) J Phys Chem 98:8519

    Article  CAS  Google Scholar 

  109. Stracke P, Krischok S, Kempter V (2001) Surf Sci 473:86

    Article  CAS  Google Scholar 

  110. Citrin PH, Wertheim GK, Baer Y (1978) Phys Rev Lett 41:1425

    Article  CAS  Google Scholar 

  111. Eastman DE, Himpsel FJ, van Der Veen JF (1982) J Vac Sci Technol 20:609

    Article  CAS  Google Scholar 

  112. Egelhoff WF Jr (1987) Surf Sci Rep 6:253

    Article  Google Scholar 

  113. Chrétien S, Metiu H (2007) J Chem Phys 126:104701

    Article  CAS  Google Scholar 

  114. Hutchings GJ, Hall MS, Carley AF, Landon P, Solsona BE, Kiely CJ, Herzing A, Makkee M, Moulijn JA, Overweg A, Fierro-Gonzalez JC, Guzman J, Gates BC (2006) J Catal 242:71

    Article  CAS  Google Scholar 

  115. Kim HJ, Han MK, Lee SM, Hwang DK, Shul YG (2008) Top Catal 47:109

    Article  CAS  Google Scholar 

  116. Minati L, Speranza G, Calliari L, Micheli V, Baranov A, Fanchenko S (2008) J Phys Chem A 112:7856

    Article  CAS  Google Scholar 

  117. Tanaka A, Takeda Y, Nagasawa T, Takahashi K (2003) Solid State Commun 126:191

    Article  CAS  Google Scholar 

  118. Tanaka A, Takeda Y, Imamura M, Sato S (2003) Phys Rev B 68:195415

    Article  CAS  Google Scholar 

  119. Duckers K, Bonzel HP (1989) Surf Sci 213:25

    Article  Google Scholar 

  120. Lopez-Salido I, Lim DC, Kim YD (2005) Surf Sci 588:6

    Article  CAS  Google Scholar 

  121. Lim DC, Lopez-Salido I, Kim YD (2005) Surf Sci 598:96

    Article  CAS  Google Scholar 

  122. Vijay A, Mills G, Metiu H (2003) J Chem Phys 118:6536

    Article  CAS  Google Scholar 

  123. Wendt S, Bechstein R, Porsgaard S, Lira E, Hansen JØ, Huo P, Li Z, Hammer B, Besenbacher F (2010) Phys Rev Lett 104:259703

    Article  CAS  Google Scholar 

  124. Mitsuhara K, Okumura H, Visikovskiy A, Takizawa M, Kido Y (2012) J Chem Phys 136:124707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the Danish Research Agency, the Strategic Research Council, the Villum Kahn Rasmussen Foundation, the Lundbeck Foundation, the Carlsberg Foundation, and the European Research Council through an Advanced ERC Grant (F.B.). P.T.S. acknowledges support from the EFRC “Center for Atomic Level Catalyst Design” (DOE-DE-SC0001058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lira, E., Hansen, J.Ø., Merte, L.R. et al. Growth of Ag and Au Nanoparticles on Reduced and Oxidized Rutile TiO2(110) Surfaces. Top Catal 56, 1460–1476 (2013). https://doi.org/10.1007/s11244-013-0141-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0141-z

Keywords

Navigation