Skip to main content
Log in

Dynamic Evolution of an Evaporating Liquid Meniscus from Structured Screen Meshes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Evaporation from screen mesh is a fundamental phenomenon that plays a vital role in thermal transport devices like heat pipes. Here, a laser scanning confocal microscopy setup has been utilized to study the effect of screen mesh wettability and its surface morphology on the evolution of evaporating liquid menisci from its liquid saturated pores. Stainless steel screen meshes (mesh #100 and #200) that are inherently hydrophobic in nature are turned super-hydrophilic by controlled heat treatment. The heat treatment leads to growth of oxide layer on the wire mesh and a change in surface morphology via formation of microscale pores, which improves the wettability of the screen mesh. The evaporation of liquid meniscus from pores of these untreated and heat-treated meshes is captured through confocal microscopy, and the dynamic evolution of the radius of curvature of the liquid meniscus is evaluated. A simple geometrical model is developed to predict the minimum radius of curvature \((R_{\mathrm{min}})\) of liquid meniscus in mesh pores just before its rupture (pore dryout). Meshes with high wettability, and smaller pore spacing-to-wire diameter ratio, are found to encounter a smaller \(R_{\mathrm{min}}\) before meniscus rupture. In addition, the water pore saturation inventory of the screen meshes are also measured to evaluate the effect of wettability on their water-holding capacity of screen meshes. Increase in screen mesh wettability is found to increase its pore saturation inventory. This increase in mesh pore saturation inventory coupled with the lower \(R_{\mathrm{min}}\) for super-hydrophilic mesh delays the liquid meniscus rupture (mesh dryout), leading to a much longer evaporation timescale for high wettability screen meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

D :

Pore diameter \((\upmu \hbox {m})\)

\(d_{1}\) :

Distance of contact point from the center of wire mesh \((\upmu \hbox {m})\)

\(R_{w}\) :

Wire radius \((\upmu \hbox {m})\)

\(R_{\mathrm{min}}\) :

Minimum radiuses of curvature before meniscus rupture \((\upmu \hbox {m})\)

\(\varTheta \) :

Contact angle \((^{\circ })\)

\(\beta _1 \) :

Angle between the vertical and the tangent drawn to the contact point \((^{\circ })\)

\(\beta _2 \) :

Angle made between the vertical and the radius of circle encompassing the meniscus \((^{\circ })\)

\(\beta _3 \) :

Complementary angle of \(\beta _2 (^{\circ })\)

References

  • Antao, D.S., Adera, S., Zhu, Y., Farias, E., Raj, R., Wang, E.N.: Dynamic evolution of the evaporating liquid–vapor interface in micropillar arrays. Langmuir 32, 519–526 (2016)

    Article  Google Scholar 

  • Brautsch, A., Kew, P.A.: Examination and visualization of heat transfer processes during evaporation in capillary porous structures. Appl. Therm. Eng. 22, 815–824 (2002)

    Article  Google Scholar 

  • Carey, V.P.: Liquid Vapor Phase Change Phenomenon, 2nd edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  • Du, X., Huang, X., Li, X., Meng, X., Yao, L., He, J., Huang, H., Zhang, X.: Wettability behavior of special microscale ZnO nail-coated mesh films for oil–water separation. J. Colloid Interface Sci. 458, 79–86 (2015)

    Article  Google Scholar 

  • El-Baky, M.A.A., Mohamed, M.M.: Heat pipe heat exchanger for heat recovery in air conditioning. Appl. Therm. Eng. 27, 795–801 (2007)

    Article  Google Scholar 

  • El-Dessouky, H.T., Alatiqi, I.M., Ettouney, H.M., Al-Deffeeri, N.S.: Performance of wire mesh mist eliminator. Chem. Eng. Process. 39, 129–139 (2000)

    Article  Google Scholar 

  • Faghri, A.: Heat Pipe Science and Technology. Taylor and Francis, London (1995)

    Google Scholar 

  • Israelachvili, J.N.: Interfacial and Surface Forces, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  • Iverson, B.D., Davis, T.W., Garimella, S.V.: Heat and mass transport in heat pipe wick structures. J. Thermophys. Heat Transf. 21, 392–404 (2007)

    Article  Google Scholar 

  • Lefevre, F., Rulliere, R., Lips, S., Bonjour, J.: Confocal microscopy for capillary film measurements in a flat plate heat pipe. J. Heat Transf. 132, 031502 (2010)

    Article  Google Scholar 

  • Liu, C., Hsu, P.C., Lee, H.W., Ye, M., Zheng, G., Liu, N., Li, W., Cui, Y.: Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 6, 6205 (2015)

    Article  Google Scholar 

  • Lynn, N.S., Henry, C.S., Dandy, D.S.: Evaporation from microreservoirs. Lab Chip 9, 1780–1788 (2009)

    Article  Google Scholar 

  • Mathioulakis, E., Belessiotis, V.: A new heat-pipe type solar domestic hot water system. Sol. Energy 72, 13–20 (2002)

    Article  Google Scholar 

  • Nakayama, K., Tsuji, E., Aoki, Y., Park, S.G., Habazaki, H.: Control of surface wettability of aluminum mesh with hierarchical surface morphology by monolayer coating: from superoleophobic to superhydrophilic. J. Phys. Chem. C 120, 15684–15690 (2016)

    Article  Google Scholar 

  • Nam, Y., Ju, Y.S.A.: comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications. J. Adhes. Sci. Technol. 27, 2163–2176 (2013)

    Article  Google Scholar 

  • Ranjan, R., Murthi, J.Y., Garimella, S.V.: A microscale model for thin-film evaporation in capillary wick structures. Int. J. Heat Mass Transf. 54, 169–179 (2011)

    Article  Google Scholar 

  • Ravi, S., Dharmarajan, R., Moghaddam, S.: Measurement of capillary radius and contact angle within porous media. Langmuir 31, 12954–12959 (2015)

    Article  Google Scholar 

  • Reay, D., Kew, P.: Heat Pipes Theory, Design and Applications, 5th edn. Butterworth-Heinemann, Burlington (2006)

    Google Scholar 

  • Salim, A., Sausse, J., Pironon, J., Fourar, M., Veslud, C.L.C.D.: 3-D confocal scanning laser microscopy to quantify contact angles in natural oil–water mixtures. Oil Gas Sci. Technol. 63, 645–655 (2008)

    Article  Google Scholar 

  • Shin, W.G., Mulholland, G.W., Kim, S.C., Pui, D.Y.H.: Experimental study of the filtration efficiency of nanoparticles below 20 nm at elevated temperatures. J. Aerosol Sci. 39, 488–499 (2008)

    Article  Google Scholar 

  • Stalder, A.F., Melchior, T., Müller, M., Sage, D., Blu, T., Unser, M.: Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A 364, 1–3 (2010)

    Article  Google Scholar 

  • Takahashi, K., Fukuzaki, S.: Super-hydrophilicity of stainless steel surface induced by heat treatment with gaseous ozone. Ozone Sci. Eng. 34, 315–321 (2012)

    Article  Google Scholar 

  • Tu, S.H., Wu, H.C., Wu, C.J., Cheng, S.L., Sheng, Y.J., Tsao, H.K.: Growing hydrophobicity on a smooth copper oxide thin film at room temperature and reverse wettability transition. Appl. Surf. Sci. 316, 88–92 (2014)

    Article  Google Scholar 

  • User Manual, Leica TCS SP5, Leica Microsystems

  • Vosburgh, D.J.H., Klein, T., Sheehan, M., Anthony, T.R., Peters, T.M.: Design and evaluation of a personal diffusion battery. Aerosol Sci. Technol. 47, 435–443 (2013)

    Article  Google Scholar 

  • Wong, S.C.: The Evaporation Mechanism in the Wick of Copper Heat Pipes. Springer Briefs in Multiphase Flow. Springer, Berlin (2014)

    Book  Google Scholar 

  • Xiao, R., Enright, R., Wang, E.N.: Prediction and optimization of liquid propagation in micropillar arrays. Langmuir 26, 15070–15075 (2010)

    Article  Google Scholar 

  • Yang, C., Song, C., Shang, W., Tao, P., Deng, T.: Flexible heat pipes with integrated bio inspired design. Prog. Nat. Sci. Mater. Int. 25, 51–57 (2015)

    Article  Google Scholar 

  • Zuo, Z.J., North, M.T., Wert, K.L.: High heat flux heat pipe mechanism for cooling of electronics. In: The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, vol. 2, pp. 122–128 (2000)

Download references

Acknowledgements

Financial assistance from the Department of Science and Technology, Government of India, under the FIST program is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Khandekar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Srinivasan, V., Wangaskar, B. et al. Dynamic Evolution of an Evaporating Liquid Meniscus from Structured Screen Meshes. Transp Porous Med 121, 539–555 (2018). https://doi.org/10.1007/s11242-017-0979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0979-9

Keywords

Navigation