Skip to main content
Log in

Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study reports Agrobacterium rhizogenes-mediated transformation of three cultivars of Ocimum basilicum for hairy root establishment, screening and selection for the production of rosmarinic acid and antioxidants. Hairy root development was found to be explant-specific and virulence-dependent. Distinct inter-cultivar morphological variability was found between the seven axenically developed hairy root lines and morphological traits were found to be correlated with the presence of aux2 genes, their expression and endogenous IAA content. Further inter-cultivar variability in the content of total phenolics, rosmarinic acid and caffeic acid was also found. Production of rosmarinic acid was found to be age-dependent and cultivar-specific. Chemiluminescence analysis showed the hairy roots to be rich in antioxidants and that rosmarinic acid was the major antioxidant molecule. The concentration of rosmarinic acid was found to be positively correlated with the total antioxidant potential of the hairy root extracts. On the basis of origin, morphology and metabolite content, three elite hairy root lines were selected that had significantly higher rosmarinic acid production, biomass and antioxidant potential than non-transformed roots. These new lines are rich reserves of both antioxidants and rosmarinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABTS·+ :

2,2-Azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) radical cation

CA:

Caffeic acid

dNTPs:

Nucleoside triphosphate

DPPH· :

2,2-Diphenyl-1-picrylhydrazyl radical

GAE:

Gallic acid equivalents

HPLC:

High performance liquid chromatography

HR:

Hairy root

IAA:

Indole acetic acid

M:

Minimal medium

MS:

Murashige and Skoog media

MW:

Modified white's medium

NAA:

Naphthalene acetic acid

NAM:

Naphthalene acetamide

OPA:

Ortho phosphoric acid

PCR:

Polymerase chain reaction

RA:

Rosmarinic acid

rpm:

Rotation per minute

Smr:

Streptomycin resistant

T-DNA:

Transferred DNA

TL-DNA:

Left subfragment of the transferred DNA

TR-DNA:

Right subfragment of the transferred DNA

YMA:

Yeast Mannitol Agar

YMB:

Yeast Mannitol Broth

References

  • Amselem J, Tepfer M (1992) Molecular basis for novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Mol Biol 19(3):421–432. doi:10.1007/BF00023390

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Sudha G, George J, Ravishankar GA (2001) Influence of exogenous hormones on growth and secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow local. In Vitro Cell Dev Plant 37(2):293–299. doi:10.1007/s11627-001-0052-8

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40(11):983–995. doi:10.1016/S0981-9428(02)01460-2

    Article  CAS  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26(5):599–609. doi:10.1007/s00299-006-0260-0

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Kumar A, Sudhakara Reddy M (2014) Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’ production from Bacopa monnieri (L.) Wettst. Acta Physiol Plant 36(10):2793–2801. doi:10.1007/s11738-014-1650-5

    Article  CAS  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23(3):148–154. doi:10.1007/s00299-004-0815-x

    Article  CAS  PubMed  Google Scholar 

  • Bauer N, Kiseljak D, Jelaska S (2009) The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant 53(4):650–656. doi:10.1007/s10535-009-0118-8

    Article  CAS  Google Scholar 

  • Bellomarino SA, Conlan XA, Parker RM, Barnett NW, Adams MJ (2009) Geographical classification of some Australian wines by discriminant analysis using HPLC with UV and chemiluminescence detection. Talanta 80(2):833–838. doi:10.1016/j.talanta.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324. doi:10.1016/j.biotechadv.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24(1):25–35. doi:10.1007/s00299-004-0904-x

    Article  CAS  PubMed  Google Scholar 

  • Chriqui D, Guivarc’h A, Dewitte W, Prinsen E, van Onkelen H (1996) Rol genes and root initiation and development. Plant Soil 187(1):47–55. doi:10.1007/BF00011656

    Article  CAS  Google Scholar 

  • Conlan XA, Stupka N, McDermott GP, Barnett NW, Francis PS (2010) Correlation between acidic potassium permanganate chemiluminescence and in vitro cell culture assay: physiologically meaningful antioxidant activity. Anal Methods 2(2):171–173. doi:10.1039/B9AY00242A

    Article  CAS  Google Scholar 

  • Cseke LJ, Cseke SB, Podila GK (2007) High efficiency poplar transformation. Plant Cell Rep 26(9):1529–1538. doi:10.1007/s00299-007-0365-0

    Article  CAS  PubMed  Google Scholar 

  • Doner L, Becard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5(1):25–28. doi:10.1007/BF00152749

    Article  CAS  Google Scholar 

  • Fattahi M, Nazeri V, Torras-Claveria L, Sefidkon F, Cusido RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crop Prod 50:256–263. doi:10.1016/j.indcrop.2013.07.029

    Article  CAS  Google Scholar 

  • Francis PS, Costin JW, Conlan XA, Bellomarino SA, Barnett JA, Barnett NW (2010) A rapid antioxidant assay based on acidic potassium permanganate chemiluminescence. Food Chem 122(3):926–929. doi:10.1016/j.foodchem.2010.02.050

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74(6):1175–1185. doi:10.1007/s00253-007-0856-5

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537. doi:10.1016/j.tibtech.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  • Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61(5–6):351–356

    CAS  PubMed  Google Scholar 

  • Grzegorczyk I, Matkowski A, Wysokińska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104(2):536–541. doi:10.1016/j.foodchem.2006.12.003

    Article  CAS  Google Scholar 

  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36(12):2393–2406. doi:10.1007/s10529-014-1640-0

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Xu H, Kim Y, Park S (2008) Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 24(7):969–972. doi:10.1007/s11274-007-9560-y

    Article  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell Tiss Organ Cult 80(2):151–155. doi:10.1007/s11240-004-9541-x

    Article  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2006) Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Can J Microbiol 52(11):1078–1084. doi:10.1139/w06-071

    Article  CAS  PubMed  Google Scholar 

  • Mallol A, Cusido RM, Palazon J, Bonfill M, Morales C, Pinol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • McDermott GP, Conlan XA, Noonan LK, Costin JW, Mnatsakanyan M, Shalliker RA, Barnett NW, Francis PS (2011) Screening for antioxidants in complex matrices using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Anal Chim Acta 684(1–2):134–141. doi:10.1016/j.aca.2010.10.046

    Article  CAS  PubMed  Google Scholar 

  • Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L, Medina-Bolivar F (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia Michx.). J Agric Food Chem 61(48):11744–11758. doi:10.1021/jf400760k

    Article  CAS  PubMed  Google Scholar 

  • Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F (2014) Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem 74:50–69. doi:10.1016/j.plaphy.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  • Nourozi E, Hosseini B, Hassani A (2014) A reliable and efficient protocol for induction of hairy roots in Agastache foeniculum. Biologia 69(7):870–879. doi:10.2478/s11756-014-0382-8

    Article  CAS  Google Scholar 

  • Puri A, Adholeya A (2013) A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi. Symbiosis 59(2):87–97. doi:10.1007/s13199-012-0213-z

    Article  CAS  Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 13(1):62–75. doi:10.1002/elsc.201200030

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    CAS  Google Scholar 

  • Srivastava S, Cahill DM, Conlan XA, Adholeya A (2014) A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum. J Agric Food Chem 62(41):10064–10075. doi:10.1021/jf502709e

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Adholeya A, Conlan XA, Cahill DM (2016) Acidic potassium permanganate chemiluminescence for the determination of antioxidant potential in three cultivars of Ocimum basilicum. Plant Food Hum Nutr. doi:10.1007/s11130-016-0527-8

    Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42(2):431–434. doi:10.1016/0031-9422(96)00005-2

    Article  CAS  Google Scholar 

  • Tansupo P, Suwannasom P, Luthria DL, Chanthai S, Ruangviriyachai C (2010) Optimised separation procedures for the simultaneous assay of three plant hormones in liquid biofertilisers. Phytochem Anal 21(2):157–162. doi:10.1002/pca.1172

    CAS  PubMed  Google Scholar 

  • Thimmaraju R, Venkatachalam L, Bhagyalakshmi N (2008) Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Rep 27(6):1039–1052. doi:10.1007/s00299-008-0527-8

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Praveen N, Maria John KM, Yang Y-S, Kim S-H, Chung I-M (2014) Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Org 118(3):545–557. doi:10.1007/s11240-014-0506-4

    Article  CAS  Google Scholar 

  • Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant 52(1):26–35. doi:10.1007/s10535-008-0004-9

    Article  CAS  Google Scholar 

  • Triplett B, Moss S, Bland J, Dowd M (2008) Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. In Vitro Cell Dev Plant 44(6):508–517. doi:10.1007/s11627-008-9141-2

    Article  CAS  Google Scholar 

  • Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35(7):2095–2103. doi:10.1007/s11738-013-1244-7

    Article  Google Scholar 

  • Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One 6(12):e29713. doi:10.1371/journal.pone.0029713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170(4):853–858. doi:10.1016/j.plantsci.2005.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Pushplata Singh for assistance with primer design and Ms. Deep Rajni for HPLC analysis. Infrastructure support provided by TERI, India and Deakin University, Australia is also duly acknowledged. Deakin University provided a postgraduate scholarship to SS.

Funding

This study was funded by Deakin University, Australia.

Author’s contribution

DC and AA conceived the work and provided comments on all drafts of the manuscript. XC provided technical expertise on total antioxidant and individual antioxidant chemiluminescence analysis. SS designed and carried out all the experiments, analyzed the results, prepared all the figures and tables and drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Cahill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Conlan, X.A., Adholeya, A. et al. Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tiss Organ Cult 126, 19–32 (2016). https://doi.org/10.1007/s11240-016-0973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0973-x

Keywords

Navigation