Skip to main content
Log in

Oscillatory Response of the 3D Solar Atmosphere to the Leakage of Photospheric Motion

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The direct propagation of acoustic waves, driven harmonically at the solar photosphere, into the three-dimensional solar atmosphere is examined numerically in the framework of ideal magnetohydrodynamics. It is of particular interest to study the leakage of 5-minute global solar acoustic oscillations into the upper, gravitationally stratified and magnetised atmosphere, where the modelled solar atmosphere possesses realistic temperature and density stratification. This work aims to complement and bring further into the 3D domain our previous efforts (by Erdélyi et al., 2007, Astron. Astrophys. 467, 1299) on the leakage of photospheric motions and running magnetic-field-aligned waves excited by these global oscillations. The constructed model atmosphere, most suitable perhaps for quiet Sun regions, is a VAL IIIC derivative in which a uniform magnetic field is embedded. The response of the atmosphere to a range of periodic velocity drivers is numerically investigated in the hydrodynamic and magnetohydrodynamic approximations. Among others the following results are discussed in detail: i) High-frequency waves are shown to propagate from the lower atmosphere across the transition region, experiencing relatively low reflection, and transmitting most of their energy into the corona; ii) the thin transition region becomes a wave guide for horizontally propagating surface waves for a wide range of driver periods, and particularly at those periods that support chromospheric standing waves; iii) the magnetic field acts as a waveguide for both high- and low-frequency waves originating from the photosphere and propagating through the transition region into the solar corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aschwanden, M.: 2004, Physics of the Solar Corona. An Introduction, Praxis, Chichester.

    Google Scholar 

  • Banerjee, D., Erdélyi, R., Oliver, R., O’Shea, E.: 2007, Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3.

    Article  ADS  Google Scholar 

  • Bogdan, T., Carlsson, M., Hansteen, V., McMurry, A., Rosenthal, C., Johnson, M., Petty-Powell, S., Zita, E., Stein, R., McIntosh, S., Nordlund, Å.: 2003, Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2001, Note on an exact solution for magnetoatmospheric waves. Astrophys. J. 548, 473.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Hood, A., Walsh, R.: 2002, The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., De Wijn, A.: 2003, Intensity oscillations in the upper transition region above active region plage. Astrophys. J. 595, L63.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Tarbell, T., Erdélyi, R.: 2003, Correlations on arcsecond scales between chromospheric and transition region emission in active regions. Astrophys. J. 590, 502.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., James, S.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., De Moortel, I.: 2005, How to channel photospheric oscillations into the corona. Astrophys. J. 624, L61.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Malins, C., Tóth, G., De Pontieu, B.: 2007, Leakage of photospheric acoustic waves into non-magnetic solar atmosphere. Astron. Astrophys. 467, 1299.

    Article  ADS  Google Scholar 

  • Finsterle, W., Haberreiter, M., Kosovichev, S., Schmutz, W.: 2008, P-mode leakage and Lyman-α intensity. In: Erdélyi, R., Mendoza-Brice no, C.A. (eds.) Waves and Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology. Proceedings of the International Astronomical Union, IAU Symp. 247, 74.

  • Fleck, B., Deubner, F.L.: 1989, Dynamics of the solar atmosphere. II – Standing waves in the solar chromosphere. Astron. Astrophys. 224, 245.

    ADS  Google Scholar 

  • Gudiksen, B., Nordlund, Å.: 2002, Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. 572, L113.

    Article  ADS  Google Scholar 

  • Hansteen, V., Carlsson, M., Gudiksen, B.: 2007, 3D numerical models of the chromosphere, transition region, and corona. In: Heinzel, P., Dorotovic, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas CS-368, Astron. Soc. Pac., San Francisco, 107.

    Google Scholar 

  • Hansteen, V., De Pontieu, B., Rouppe van der Voort, L., van Noort, M., Carlsson, M.: 2006, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. 647, 73.

    Article  ADS  Google Scholar 

  • Hasan, S., van Ballegooijen, A.: 2008, Dynamics of the solar magnetic network. II. Heating the magnetized chromosphere. Astrophys. J. 680, 1542.

    Article  ADS  Google Scholar 

  • Hasan, S., van Ballegooijen, A., Kalkofen, W., Steiner, O.: 2005, Dynamics of the solar magnetic network: Two-dimensional MHD simulations. Astrophys. J. 631, 1270.

    Article  ADS  Google Scholar 

  • Heggland, L., De Pontieu, B., Hansteen, V.H.: 2007, Numerical simulations of shock wave-driven chromospheric jets. Astrophys. J. 666, 1277.

    Article  ADS  Google Scholar 

  • Malins, C., Erdélyi, R.: 2007, Direct propagation of photospheric acoustic p modes into nonmagnetic solar atmosphere. Solar Phys. 246, 41.

    Article  ADS  Google Scholar 

  • Marsh, M., Walsh, R.: 2006, p-Mode propagation through the transition region into the solar corona. I. Observations. Astrophys. J. 643, 540.

    Article  ADS  Google Scholar 

  • Marsh, M., Walsh, R., De Moortel, I., Ireland, J.: 2003, Joint observations of propagating oscillations with SOHO/CDS and TRACE. Astron. Astrophys. 404, L37.

    Article  ADS  Google Scholar 

  • McDougall, A.M.D., Hood, A.W.: 2008, MHD mode conversion in a stratified atmosphere. In: Erdélyi, R., Mendoza-Briceno, C.A. (eds.) Waves and Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology. Proceedings of the International Astronomical Union, IAU Symp. 247, 296.

  • McWhirter, R., Thonemann, P., Wilson, R.: 1975, The heating of the solar corona. II – A model based on energy balance. Astron. Astrophys. 40, 63.

    ADS  Google Scholar 

  • Nakagawa, Y.: 1981, Evolution of magnetic field and atmospheric responses – Part two – formulation of proper boundary equations. Astrophys. J. 247, 707.

    Article  ADS  Google Scholar 

  • Nordlund, Å., Galsgaard, K.: 1995, A 3D MHD code for parallel computers. Tech. Rep., Astron. Obs. Univ. Copenhagen.

  • Ofman, L., Davila, J.: 1998, Solar wind acceleration by large-amplitude nonlinear waves: Parametric study. J. Geophys Res. 103, 23667.

    Article  ADS  Google Scholar 

  • Ofman, L., Thompson, B.: 2002, Interaction of EIT waves with coronal active regions. Astrophys. J. 574, 440.

    Article  ADS  Google Scholar 

  • Ofman, L., Nakariakov, V., Sehgal, N.: 2000, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.: 1995, Magnetohydrodynamic waves in a bounded inhomogeneous medium with prominence-corona properties. Astrophys. J. 448, 444.

    Article  ADS  Google Scholar 

  • Roberts, B.: 2004, MHD waves in the solar atmosphere. In: Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: Joint View from SOHO and TRACE, Proceedings of SOHO 13 547, 1.

  • Schunker, H., Cally, P.S.: 2006, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc. 372, 551.

    Article  ADS  Google Scholar 

  • Shelyag, S., Fedun, V., Erdélyi, R.: 2008, Magnetohydrodynamic code for gravitationally-stratified media. Astron. Astrophys. 486, 655S.

    Article  ADS  Google Scholar 

  • Shibata, K.: 1983, Nonlinear MHD wave propagation in the solar chromosphere. I. The case of a uniform vertical magnetic field. Publ. Astron. Soc. Japan 35, 263.

    ADS  MathSciNet  Google Scholar 

  • Tóth, G.: 1996, A general code for modeling MHD flows on parallel computers: Versatile advection code. Astrophys. Lett. Commun. 34, 245.

    ADS  Google Scholar 

  • Vernazza, J., Avrett, E., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser. 45, 635.

    Article  ADS  Google Scholar 

  • Wu, S., Zheng, H., Wang, S., Thompson, B., Plunkett, S., Zhao, X., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the extreme ultraviolet imaging telescope. J. Geophys Res. 106, 25089.

    Article  ADS  Google Scholar 

  • Zhugzhda, Y.D.: 1979, Magnetogravity waves in an isothermal conductive atmosphere. Sov. Astron. 23, 42.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Fedun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedun, V., Erdélyi, R. & Shelyag, S. Oscillatory Response of the 3D Solar Atmosphere to the Leakage of Photospheric Motion. Sol Phys 258, 219–241 (2009). https://doi.org/10.1007/s11207-009-9407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-009-9407-9

Keywords

Navigation