Skip to main content

Advertisement

Log in

Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Graphitic-C3N4/TiO2 nanocomposite was prepared as a photocatalyst (PC) active under visible light (λ ≥ 420 nm) by preparation of graphitic carbon nitride (g-C3N4) from melamine followed by an effective easy impregnation method. Several g-C3N4/TiO2 composites containing 1 to 12 wt% g-C3N4 were synthesized and characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), photoluminescence (PL) spectroscopy, diffusion reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) measurements. A photocatalytic mechanism is proposed based on the relative positions of the energy bands of the two constituents. Compared with its individual components, g-C3N4/TiO2 demonstrated unusually high photocatalytic activity for phenol decomposition in aqueous phase under visible-light irradiation. The heterojunction was optimized in the 5 wt% g-C3N4/TiO2 nanocomposite due to the well-matched bandgap structure (optimum loading) and excellent electron–hole pair separation in the conduction and valence band of TiO2 and g-C3N4, respectively. After 2 h of visible-light irradiation, 68 % degradation was observed when using this optimum composition. The performance was slightly decreased (to 66 %) after recycling of the catalyst four times (used a total of five times), but remained reliable for industrial applications considering other factors. In this system, TiO2 (Degussa P25) seems to play the principal PC role, while g-C3N4 acts as a sensitizer for absorption of visible light. Due to the enhanced visible-light absorption ability enabled by g-C3N4 in the composite, stable electron–hole (e–h+) pairs produced at the interface of the heterojunction lead to generation of highly reactive free radicals (·O2, ·OH, etc.) which together initiate degradation of phenol but individually suffer from some limitation that must be overcome. The thermal stability and recycling efficiency of this PC will enable its use in industrial applications as a cost-effective sustainable cleanup candidate.

Graphical abstract

The prepared g-C3N4/TiO2 exhibits stable electron–hole (e–h+) pair separation at the heterojunction under visible light for enhanced degradation of organic pollutants via a redox mechanism. The g-C3N4 loading affects the photocatalytic activity, with the 5 wt% g-C3N4/TiO2 composite exhibiting the highest degradation, with recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Babich, D. Davis, Regul. Toxicol. Pharmacol. 1, 1 (1981)

    Article  Google Scholar 

  2. M. Ahmaruzzaman, Adv. Colloid Interface Sci. 166, 1 (2011)

    Article  CAS  Google Scholar 

  3. D. Malik, C. Jain, A.K. Yadav, Appl. Water Sci. 7, 5 (2017)

    Google Scholar 

  4. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 5 (2012)

    Article  CAS  Google Scholar 

  5. A. Demirbas, Prog. Energy Combust. Sci. 31, 2 (2005)

    Google Scholar 

  6. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 6 (2002)

    Article  CAS  Google Scholar 

  7. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 22 (2014)

    Article  Google Scholar 

  8. H. Yan, H. Yang, J. Alloys Compd. 509, 4 (2011)

    Google Scholar 

  9. M. Umar and H.A. Aziz, Organic Pollutants-Monitoring, Risk and Treatment. (InTech, 2013)

  10. J. Lei, Y. Chen, F. Shen, L. Wang, Y. Liu, J. Zhang, J. Alloys Compd. 631, 328 (2015)

    Article  CAS  Google Scholar 

  11. S. Ahmed, M. Rasul, R. Brown, M. Hashib, J. Environ. Manag. 92, 3 (2011)

    Article  CAS  Google Scholar 

  12. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, J. Colloid Interface Sci. 417, 402 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. J. Zhang, F. Huang, Appl. Surf. Sci. 358, 287 (2015)

    Article  CAS  Google Scholar 

  14. J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B Environ. 206, 406 (2017)

    Article  CAS  Google Scholar 

  15. C. Miranda, H. Mansilla, J. Yáñez, S. Obregón, G. Colón, J. Photochem. Photobiol. A Chem. 253, 16 (2013)

    Article  CAS  Google Scholar 

  16. H. Li, L. Zhou, L. Wang, Y. Liu, J. Lei, J. Zhang, Phys. Chem. Chem. Phys. 17, 26 (2015)

    Article  Google Scholar 

  17. G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47, 24 (2008)

    Article  Google Scholar 

  18. K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7, 17 (2015)

    Google Scholar 

  19. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 7 (2012)

    Article  CAS  Google Scholar 

  20. S. Obregón, G. Colón, Appl. Catal. B Environ. 144, 775 (2014)

    Article  CAS  Google Scholar 

  21. X. Lu, Q. Wang, D. Cui, J. Mater. Sci. Technol. 26, 10 (2010)

    Google Scholar 

  22. L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. 43, 4 (2017)

    Google Scholar 

  23. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water Res. 44, 10 (2010)

    Article  CAS  Google Scholar 

  24. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C Photochem. Rev. 9, 1 (2008)

    Article  CAS  Google Scholar 

  25. W.-Y. Wang, Y. Ku, Colloids Surf. A Physicochem. Eng. Asp. 302, 1 (2007)

    Article  CAS  Google Scholar 

  26. S.S. Chin, K. Chiang, A.G. Fane, J. Membr. Sci. 275, 1 (2006)

    Article  CAS  Google Scholar 

  27. M. Minella, V. Maurino, C. Minero, E. Pelizzetti, J. Nanosci. Nanotechnol. 15, 5 (2015)

    Article  CAS  Google Scholar 

  28. Q. Qiao, K. Yang, L.-L. Ma, W.-Q. Huang, B.-X. Zhou, A. Pan, W. Hu, X. Fan, G.-F. Huang, J. Phys. D Appl. Phys. 51, 27 (2018)

    Article  CAS  Google Scholar 

  29. Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B Environ. 202, 611 (2017)

    Article  CAS  Google Scholar 

  30. M. Fu, J. Liao, F. Dong, H. Li, H. Liu, J. Nanomater. 2014, 8 (2014)

    Google Scholar 

  31. M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Colloids Surf. B Biointerfaces 157, 456 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. P. Fernandez-Ibanez, J. Blanco, S. Malato, F. De Las Nieves, Water Res. 37, 13 (2003)

    Article  CAS  Google Scholar 

  33. M. Konishi, T. Isobe, M. Senna, J. Lumin. 93, 1 (2001)

    Article  CAS  Google Scholar 

  34. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Sci. Rep. 3, 1943 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  35. F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311, 574 (2014)

    Article  CAS  Google Scholar 

  36. K.M. Yu, M.L. Cohen, E. Haller, W. Hansen, A.Y. Liu, I. Wu, Phys. Rev. B 49, 7 (1994)

    Google Scholar 

  37. J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 5 (2015)

    Google Scholar 

  38. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 19 (2003)

    Article  CAS  Google Scholar 

  39. L. Gu, J. Wang, Z. Zou, X. Han, J. Hazard. Mater. 268, 216 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. J. Li, Y. Liu, H. Li, C. Chen, J. Photochem. Photobiol. A Chem. 317, 151 (2016)

    Article  CAS  Google Scholar 

  41. X. Wu, C. Liu, X. Li, X. Zhang, C. Wang, Y. Liu, Mater. Sci. Semicond. Process. 32, 27 (2015)

    Article  CAS  Google Scholar 

  42. C. Wang, W. Zhu, Y. Xu, H. Xu, M. Zhang, Y. Chao, S. Yin, H. Li, J. Wang, Ceram. Int. 40, 8 (2014)

    Google Scholar 

  43. T. Wen, J. Gao, J. Shen, Z. Zhou, J. Mater. Sci. 36, 24 (2001)

    Google Scholar 

  44. Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces 6, 16 (2014)

    Google Scholar 

  45. P. Gabbott, Principles and Applications of Thermal Analysis (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  46. P.J. Haines, Thermal Methods of Analysis: Principles, Applications and Problems (Springer, Berlin, 2012)

    Google Scholar 

  47. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules 42, 14 (2009)

    Article  CAS  Google Scholar 

  48. W.F. Schmidt, C.L. Broadhurst, J. Qin, H. Lee, J.K. Nguyen, K. Chao, C.J. Hapeman, D.R. Shelton, M.S. Kim, Appl. Spectrosc. 69, 3 (2015)

    Article  CAS  Google Scholar 

  49. W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, H. Fu, Adv. Funct. Mater. 21, 10 (2011)

    Google Scholar 

  50. S. Yan, Z. Li, Z. Zou, Langmuir 26, 6 (2010)

    CAS  Google Scholar 

  51. X.-X. Zhang, X.-M. Tao, K.-L. Yick, X.-C. Wang, Colloid Polym. Sci. 282, 4 (2004)

    Google Scholar 

  52. S. Yan, Z. Li, Z. Zou, Langmuir 25, 17 (2009)

    Article  CAS  Google Scholar 

  53. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.-K. Ho, ACS Appl. Mater. Interfaces 5, 21 (2013)

    Article  CAS  Google Scholar 

  54. Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 15 (2011)

    Google Scholar 

  55. K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ. 142, 718 (2013)

    Article  CAS  Google Scholar 

  56. J. Ma, C. Wang, H. He, Appl. Catal. B Environ. 184, 28 (2016)

    Article  CAS  Google Scholar 

  57. M. Muñoz-Batista, A. Kubacka, M. Fernandez-Garcia, Catal. Sci. Technol. 4, 7 (2014)

    Article  CAS  Google Scholar 

  58. X. Li, Y. Zhao, Water Sci. Technol. 39, 10 (1999)

    Google Scholar 

  59. X. Weimin, S.-U. Geissen, Water Res. 35, 5 (2001)

    Google Scholar 

  60. R.J. Watts, S. Kong, W. Lee, J. Environ. Eng. 121, 10 (1995)

    Article  Google Scholar 

  61. M. Lapertot, P. Pichat, S. Parra, C. Guillard, C. Pulgarin, J. Environ. Sci. Health Part A 41, 6 (2006)

    Article  CAS  Google Scholar 

  62. A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22, 6 (1993)

    Article  Google Scholar 

  63. H. Hidaka, H. Kubota, M. Graätzel, E. Pelizzetti, N. Serpone, J. Photochem. 35, 2 (1986)

    Article  Google Scholar 

  64. R. Fagan, D.E. McCormack, S.J. Hinder, S.C. Pillai, Materials 9, 4 (2016)

    Article  CAS  Google Scholar 

  65. M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki, N. Hioka, J. Hazard. Mater. 162, 1 (2009)

    Article  CAS  Google Scholar 

  66. J.C. Colmenares, R. Luque, Chem. Soc. Rev. 43, 3 (2014)

    Article  Google Scholar 

  67. J.-M. Herrmann, Catal. Today 53, 1 (1999)

    Article  Google Scholar 

  68. D. Zhou, Z. Chen, Q. Yang, X. Dong, J. Zhang, L. Qin, Sol. Energy Mater. Sol. Cells 157, 3970 (2016)

    Google Scholar 

  69. Y. Yuan, G.-F. Huang, W.-Y. Hu, D.-N. Xiong, B.-X. Zhou, S. Chang, W.-Q. Huang, J. Phys. Chem. Solids 106, 1 (2017)

    Article  CAS  Google Scholar 

  70. W. Zhang, M. Zhang, Z. Yin, Q. Chen, Appl. Phys. B Lasers Opt. 70, 2 (2000)

    Google Scholar 

  71. G. Cheng, M.S. Akhtar, O.-B. Yang, F.J. Stadler, ACS Appl. Mater. Interfaces 5, 14 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rashidul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Chakraborty, A.K., Gafur, M.A. et al. Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Res Chem Intermed 45, 1753–1773 (2019). https://doi.org/10.1007/s11164-018-3703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3703-7

Keywords

Navigation