Skip to main content
Log in

Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The electrical conductivity of biodegradable polymeric scaffolds has shown promising results in tissue engineering, particularly for electrically excitable tissues such as muscles and nerves. Herein, we demonstrate a novel processing approach to produce electroactive nanofibres. Electrically conducting, robust nanofibres comprising both a biodegradable component using poly(ε-caprolactone) (PCL) and a conducting component, polypyrrole (PPy), have been produced by electrospinning and vapour phase polymerization. The PCL/PPy nanofibres were characterised in terms of morphology, electrical conductivity, and dimensional stability. The as-prepared nanofibres were found to be cytocompatible with good electrical conductivity and mechanical properties. It was found that electrical conductivity of the PPy coated PCL nanofibre was 1.9 S/cm, which is much higher than that of PCL mixed with PPy in other studies. Cell viability on the scaffolds were firstly examined by in vitro culturing the L929 fibroblast cells for 24 h, revealing viability of 97.6 ± 2.7 %. Then PC12 cells differentiation observed by neurite outgrowth which occurred after 4 days of culture on the scaffolds. Significantly larger areas of the PPy coated PCL were covered by cells compared to PCL without coating. The obtained results from filament staining suggested the high potentials of the conducting scaffold for use in neural tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Okamoto, B. John, Prog. Polym. Sci. 38, 10–11 (2013)

    Article  Google Scholar 

  2. J. De Boer, C. Van Blitterswijk, P. Thomsen, J. Hubbell, R. Cancedda, J.D. de Bruijn, A. Lindahl, J. Sohier, D.F. Williams, Tissue Engineering (Elsevier Science, Amsterdam, 2008)

    Google Scholar 

  3. M.A. Woodruff, D.W. Hutmacher, Prog. Polym. Sci. 35(10), 1217 (2010)

    Article  CAS  Google Scholar 

  4. A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, D. Juncker, Biotechnol. Adv. 31, 669–687 (2012)

  5. A. Cipitria, A. Skelton, T. Dargaville, P. Dalton, D. Hutmacher, J. Mater. Chem. 21(26), 9419 (2011)

    Article  CAS  Google Scholar 

  6. T.K. Dash, V.B. Konkimalla, J. Control. Release 158(1), 15 (2012)

    Article  CAS  Google Scholar 

  7. W.-J. Li, R. Tuli, C. Okafor, A. Derfoul, K.G. Danielson, D.J. Hall, R.S. Tuan, Biomaterials 26(6), 599 (2005)

    Article  CAS  Google Scholar 

  8. H.S. Kim, H.S. Yoo, Nanomedicine 9(4), 517 (2014)

    Article  CAS  Google Scholar 

  9. A. Subramanian, U.M. Krishnan, S. Sethuraman, Ann. Biomed. Eng. 40(10), 2098 (2012)

    Article  Google Scholar 

  10. M.P. Prabhakaran, L. Ghasemi-Mobarakeh, S. Ramakrishna, J. Nanosci. Nanotechnol. 11(4), 3039 (2011)

    Article  CAS  Google Scholar 

  11. L. Binan, A. Ajji, G. De Crescenzo, M. Jolicoeur, Stem Cell Rev. Rep. 10(1), 44 (2014)

    Article  CAS  Google Scholar 

  12. J.G. Hardy, J.Y. Lee, C.E. Schmidt, Curr. Opin. Biotechnol. 24(5), 847 (2013)

    Article  CAS  Google Scholar 

  13. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, S. Ramakrishna, Biomaterials 29(34), 4532 (2008)

    Article  CAS  Google Scholar 

  14. M. Naebe, T. Lin, X. Wang, Carbon Nanotubes Reinforced Electrospun Polymer Nanofibres (InTech, Vienna, 2010)

    Book  Google Scholar 

  15. H. Bagheri, Z. Ayazi, M. Naderi, Anal. Chim. Acta 767, 1 (2013)

    Article  CAS  Google Scholar 

  16. H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Prog. Polym. Sci. 39(4), 627 (2014)

    Article  CAS  Google Scholar 

  17. M. Naebe, T. Lin, L. Feng, L. Dai, A. Abramson, V. Prakash, X. Wang, Nanoscience and Nanotechnology for Chemical and Biological Defense (American Chemical Society, Washington, DC, 2009), pp. 39–58

    Book  Google Scholar 

  18. R. Balint, N.J. Cassidy, S.H. Cartmell, Acta Biomater. 10, 2341–2353 (2014)

  19. G.G. Wallace, Conductive Electroactive Polymers: Intelligent Polymer Systems, 3rd edn. (CRC Press, Boca Raton, 2009)

    Google Scholar 

  20. J. Wang, H.E. Naguib and A. Bazylak, in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, 2012), pp. 83420F–83413

  21. A. Laforgue, L. Robitaille, Chem. Mater. 22(8), 2474 (2010)

    Article  CAS  Google Scholar 

  22. J. Foroughi, G.M. Spinks, G.G. Wallace, P.G. Whitten, Synth. Met. 158, 3–4 (2008)

    Article  Google Scholar 

  23. N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. (Oxford) 32, 8–9 (2007)

    Article  Google Scholar 

  24. Y.D. Kim, J.H. Kim, Colloid Polym. Sci. 286, 6–7 (2008)

    Article  Google Scholar 

  25. G. Jin, K. Li, Mater. Sci. Eng., C (2014). doi:10.1016/j.msec.2014.06.004

    Google Scholar 

  26. X. Liu, J. Chen, K.J. Gilmore, M.J. Higgins, Y. Liu, G.G. Wallace, J. Biomed. Mater. Res., Part A 94A(4), 1004 (2010)

    CAS  Google Scholar 

  27. B. Guo, L. Glavas, A.-C. Albertsson, Prog. Polym. Sci. 38(9), 1263 (2013)

    Article  CAS  Google Scholar 

  28. H. Cui, Y. Liu, M. Deng, X. Pang, P. Zhang, X. Wang, X. Chen, Y. Wei, Biomacromolecules 13(9), 2881 (2012)

    Article  CAS  Google Scholar 

  29. D. Mawad, E. Stewart, D.L. Officer, T. Romeo, P. Wagner, K. Wagner, G.G. Wallace, Adv. Funct. Mater. 22(13), 2692 (2012)

    Article  CAS  Google Scholar 

  30. D. Kai, M.P. Prabhakaran, G. Jin, S. Ramakrishna, J. Biomed. Mater. Res., Part A 99 A(3), 376 (2011)

    Article  Google Scholar 

  31. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna, J. Tissue Eng. Regener. Med. 5(4), e17 (2011)

    Article  CAS  Google Scholar 

  32. P. Moroder, M.B. Runge, H. Wang, T. Ruesink, L. Lu, R.J. Spinner, A.J. Windebank, M.J. Yaszemski, Acta Biomater. 7(3), 944 (2011)

    Article  CAS  Google Scholar 

  33. J. Zhang, K. Qiu, B. Sun, J. Fang, K. Zhang, H. Ei-Hamshary, S.S. Al-Deyab, X. Mo, J. Mater. Chem. B 2(45), 7945 (2014)

    Article  Google Scholar 

  34. S. Meng, Tissue Eng. Regener. Med. 11(4), (2014)

  35. J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials 30(26), 4325 (2009)

    Article  CAS  Google Scholar 

  36. A.O.H. Tavanai, M. Morshed. Polym. Adv. Technol. 23(9), (2012)

  37. A.J. Patil, S.C. Deogaonkar, J. Appl. Polym. Sci. 125(2), 844 (2012)

    Article  CAS  Google Scholar 

  38. S.J. Kim, D.H. Jang, W.H. Park, B.-M. Min, Polymer 51(6), 1320 (2010)

    Article  CAS  Google Scholar 

  39. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Biomaterials 26(15), 2603 (2005)

    Article  CAS  Google Scholar 

  40. C.S. Wong, E. Nuhiji, A. Sutti, G. Keating, X. Liu, M. Kirkland, X. Wang, Text. Res. J. 82(13), 1371 (2012)

    Article  CAS  Google Scholar 

  41. S.J. Park, B.-K. Lee, M.H. Na, D.S. Kim, Acta Biomater. 9, 7719–7726 (2013)

    Article  CAS  Google Scholar 

  42. P. Danilevicius, L. Georgiadi, C.J. Pateman, F. Claeyssens, M. Chatzinikolaidou, M. Farsari, Appl. Surf. Sci. 336, 2 (2015)

    Article  CAS  Google Scholar 

  43. K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biomaterials 27(18), 3413 (2006)

    Article  CAS  Google Scholar 

  44. A.R. Nectow, K.G. Marra, D.L. Kaplan, Tissue Eng. Part B Rev. 18(1), 40 (2012)

    Article  CAS  Google Scholar 

  45. R.H.W. Funk, T. Monsees, N. Özkucur, Prog. Histochem. Cytochem. 43(4), 177 (2009)

    Article  Google Scholar 

  46. A. Ndreu, L. Nikkola, H. Ylikauppilar, N. Ashammakhi, V. Hasirci, Nanomedicine 3, 1 (2008)

    Article  Google Scholar 

  47. Q. Lian, D. Li, L. Zhu, Z. Jin, Jixie Gongcheng Xuebao/J. Mech. Eng. 50, 4 (2014)

    Google Scholar 

  48. A.J. Bauer, Y. Wu, B. Li, Macromol. Biosci. 16, 5 (2016)

    Article  Google Scholar 

  49. A.J. Bauer, T. Zeng, J. Liu, C. Uthaisar, B. Li, Macromol. Rapid Commun. 35(7), 1524 (2014)

    Google Scholar 

  50. C.-L. Pai, M.C. Boyce, G.C. Rutledge, Macromolecules 42(6), 2102 (2009)

    Article  CAS  Google Scholar 

  51. R. Ravichandran, S. Sundarrajan, J.R. Venugopal, S. Mukherjee, S. Ramakrishna, Macromol. Biosci. 12(3), 286 (2012)

    Article  CAS  Google Scholar 

  52. W.-J. Li, R.L. Mauck, J.A. Cooper, X. Yuan, R.S. Tuan, J. Biomech. 40(8), 1686 (2007)

    Article  Google Scholar 

  53. E. Pektok, B. Nottelet, J.-C. Tille, R. Gurny, A. Kalangos, M. Moeller, B.H. Walpoth, Circulation 118(24), 2563 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Deakin University International Research Scholarship awarded to the first author is acknowledged. The present work was carried out with the support of the Deakin Advanced Characterisation Facility. The fibroblast L929 cells were kindly provided by Professor Mark Wilson, University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoo Naebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafei, S., Foroughi, J., Stevens, L. et al. Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res Chem Intermed 43, 1235–1251 (2017). https://doi.org/10.1007/s11164-016-2695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2695-4

Keywords

Navigation