Skip to main content
Log in

Enhanced photocatalytic activities of TiO2–SiO2 nanohybrids immobilized on cement-based materials for dye degradation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Using cement-based material as a matrix for photocatalytic hybrids is an important development for the large-scale application of photocatalytic technologies. In this work, photocatalytic activity of nanosized hybrids of TiO2/SiO2 (nano-TiO2–SiO2) for degradation of some organic dyes on cementitious materials was highlighted. For this purpose, an optimal inorganic sol–gel precursor was firstly applied to prepare the composites of nano-TiO2–SiO2 which was characterized by XRD, SEM and UV–Vis. Then, a thin layer was successfully coated on white Portland cement (WPC) blocks using a dipping process in a nano-TiO2–SiO2 solution. The effect of nano-TiO2–SiO2-coated WPC blocks on photocatalytic decomposition of three dyes, including Malachite green oxalate (MG), Methylene blue (MB) and Methyl orange (MO) were studied under UV irradiation and monitored by chemical oxygen demand tests. The results showed an increase in photocatalytic effects which depends on the structure and pH of the applied cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.G. Levine, Metabolism of azo dyes: implication for detoxication and activation. Drug Metab. Rev. 23(3–4), 253–309 (1991)

    Article  CAS  Google Scholar 

  2. J.H. Weisburger, Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat. Res-Fund Mol. M, 506–507, 9–20 (2002). http://www.sciencedirect.com/science/article/pii/S0027510702001471

  3. P. Vineis, R. Pirastu, Aromatic amines and cancer. Cancer Causes Control Pap. Symp. 8(3), 346–355 (1997)

    Article  CAS  Google Scholar 

  4. W. Azmi, R.K. Sani, U.C. Banerjee, Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol. 22(3), 185–191 (1998). doi:10.1016/S0141-0229(97)00159-2

    Article  CAS  Google Scholar 

  5. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97(9), 1061–1085 (2006)

    Article  CAS  Google Scholar 

  6. S.H. Lin, C.F. Peng, Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Res. 30(3), 587–592 (1996)

    Article  CAS  Google Scholar 

  7. H. Selcuk, Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigm. 64(3), 217–222 (2005)

    Article  CAS  Google Scholar 

  8. E. Sahinkaya, N. Uzal, U. Yetis, F.B. Dilek, Biological treatment and nanofiltration of denim textile wastewater for reuse. J. Hazard Mater. 153(3), 1142–1148 (2008)

    Article  CAS  Google Scholar 

  9. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39(1), 75–90 (2002)

    Article  CAS  Google Scholar 

  10. M. Vautier, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J. Catal. 201(1), 46–59 (2001). doi:10.1006/jcat.2001.3232

    Article  CAS  Google Scholar 

  11. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34(1), 327–333 (2000). doi:10.1016/S0043-1354(99)00093-7

    Article  CAS  Google Scholar 

  12. K. Sahel, M. Bouhent, F. Belkhadem, M. Ferchichi, F. Dappozze, C. Guillard, F. Figueras, Photocatalytic degradation of anionic and cationic dyes over TiO2 P25, and Ti-pillared clays and Ag-doped Ti-pillared clays. Appl. Clay Sci. 95, 205–210 (2014). doi:10.1016/j.clay.2014.04.014

    Article  CAS  Google Scholar 

  13. B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  14. G. Tian, H. Fu, L. Jing, B. Xin, K. Pan, Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. J. Phys. Chem. C 112(8), 3083–3089 (2008). doi:10.1021/jp710283p

    Article  CAS  Google Scholar 

  15. W.X. Huang, H. Huang, H. Li, Z.H. Zhou, H. Chen, Superhydrophilic nano-TiO2 film with porous surface structure. Mater. Res. Innovations 13(4), 459–463 (2009). doi:10.1179/143289109X12494867167486

    Article  CAS  Google Scholar 

  16. K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B 48(2), 83–93 (2004). doi:10.1016/j.apcatb.2003.09.013

    Article  CAS  Google Scholar 

  17. G. Shen, R. Du, Y. Chen, C. Lin, D. Scantlebury, Study on hydrophobic nano-titanium dioxide coatings for improvement in corrosion resistance of type 316L stainless steel. Corrosion 61(10), 943–950 (2005)

    Article  CAS  Google Scholar 

  18. L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel. Appl. Catal. B 40(4), 287–292 (2003)

    Article  CAS  Google Scholar 

  19. S.G. Wang, Z.R. Du, C.X. Kong, P.F. Li, J.L. Xu, C.X. Wang, J.H. Wang, Photocatalytic properties of TiO2/CNTS films with different morphology on stainless steel substrates. Nano 9(01), 1450003 (2014). doi:10.1142/S1793292014500039

    Google Scholar 

  20. J. Li, L. Li, L. Zheng, Y. Xian, L. Jin, Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2 film on quartz. Talanta 68(3), 765–770 (2006). doi:10.1016/j.talanta.2005.06.012

    Article  CAS  Google Scholar 

  21. M. Kemell, V. Pore, M. Ritala, M. Leskelä, M. Lindén, Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J. Am. Chem. Soc. 127(41), 14178–14179 (2005). doi:10.1021/ja0532887

    Article  CAS  Google Scholar 

  22. J. Medina-Valtierra, M. Sánchez-Cárdenas, C. Frausto-Reyes, S. Calixto, Formation of smooth and rough TiO2 thin films on fiberglass by sol–gel method. J. Mex. Chem. Soc. 50(1), 8–13 (2006)

    CAS  Google Scholar 

  23. S. Chen, M. Zhao, Y. Tao, Photocatalytic degradation of organophosphoros pesticides using TiO2 supported on fiberglass. Microchem. J. 54(1), 54–58 (1996). doi:10.1006/mchj.1996.0076

    Article  Google Scholar 

  24. N. Veronovski, A. Rudolf, M. Smole, T. Kreže, J. Geršak, Self-cleaning and handle properties of TiO2-modified textiles. Fibers Polym 10(4), 551–556 (2009). doi:10.1007/s12221-009-0551-5

    Article  CAS  Google Scholar 

  25. S.U. Şule, S. Merih, A.H. Aktaş, The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics. Nanotechnology 21(32), 325603 (2010)

    Article  Google Scholar 

  26. R. Benedix, F. Dehn, J. Quaas, M. Orgass, Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer 5, 157–168 (2000)

    Google Scholar 

  27. S. Guo, Z. Wu, W. Zhao, TiO2-based building materials: above and beyond traditional applications. Chin. Sci. Bull. 54(7), 1137–1142 (2009)

    CAS  Google Scholar 

  28. A. Beeldens, An environmental friendly solution for air purification and self-cleaning effect: the application of TIO2 as photocatalyst in concrete. Proceedings of Transport Research Arena Europe–TRA, Göteborg, Sweden (2006)

  29. J. Chen, C.S. Poon, Photocatalytic construction and building materials: from fundamentals to applications. Build. Sci. 44(9), 1899–1906 (2009). doi:10.1016/j.buildenv.2009.01.002

    Google Scholar 

  30. K. Demeestere, J. Dewulf, B. De Witte, A. Beeldens, H. Van Langenhove, Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build. Sci. 43(4), 406–414 (2008). doi:10.1016/j.buildenv.2007.01.016

    Google Scholar 

  31. M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, M. Anpo, Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J. Phys. Chem. B 110(50), 25266–25272 (2006). doi:10.1021/jp064893e

    Article  CAS  Google Scholar 

  32. Z. Ding, X. Hu, G.Q. Lu, P.L. Yue, P.F. Greenfield, Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 16(15), 6216–6222 (2000). doi:10.1021/la000119l

    Article  CAS  Google Scholar 

  33. D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, L. Zhang, Preparation of rutile TiO2 thin films by laser chemical vapor deposition method. J. Adv. Ceram. 2(2), 162–166 (2013). doi:10.1007/s40145-013-0056-y

    Article  CAS  Google Scholar 

  34. J. Kim, K. Zhu, N. Neale, A. Frank, Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization. Nano Convergence 1(1), 1–7 (2014). doi:10.1186/s40580-014-0009-3

    Article  Google Scholar 

  35. K.K. Schuegraf, Handbook of thin-film deposition processes and techniques (Noyes Publications/William Andrew Publishing, New York, 1988)

    Google Scholar 

  36. S. Gelover, P. Mondragón, A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. J. Photochem. Photobiol. A 165(1–3), 241–246 (2004). doi:10.1016/j.jphotochem.2004.03.023

    Article  CAS  Google Scholar 

  37. S. Shukla, S. Seal, L. Ludwig, C. Parish, Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor. Sensors Actuators B Chem. 97(2–3), 256–265 (2004). doi:10.1016/j.snb.2003.08.025

    Article  CAS  Google Scholar 

  38. J. Prochazka, L. Kavan, M. Zukalova, P. Janda, J. Jirkovsky, Z.V. Zivcova, A. Poruba, M. Bedu, M. Döbbelin, R. Tena-Zaera, Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates. J. Mater. Res. 28(03), 385–393 (2013). doi:10.1557/jmr.2012.240

    Article  CAS  Google Scholar 

  39. D.B. Mitzi, L.L. Kosbar, C.E. Murray, M. Copel, A. Afzali, High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428(6980), 299–303 (2004)

    Article  CAS  Google Scholar 

  40. R.B. Heimann, Plasma-spray coating: principles and applications (Wiley, New York, 2008)

    Google Scholar 

  41. S. Hu, F. Li, Z. Fan, Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light. Bull. Korean Chem. Soc. 33, 1895–1899 (2012)

    Article  CAS  Google Scholar 

  42. M. Zhang, L. Shi, S. Yuan, Y. Zhao, J. Fang, Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. J. Colloid Interface Sci. 330(1), 113–118 (2009)

    Article  CAS  Google Scholar 

  43. K.S. Guan, Y.S. Yin, Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film. Mater. Chem. Phys. 92(1), 10–15 (2005). doi:10.1016/j.matchemphys.2004.01.044

    Article  CAS  Google Scholar 

  44. M. Zhang, L. Shi, S. Yuan, Y. Zhao, J. Fang, Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. J. Colloid Interface Sci. 330(1), 113–118 (2009). doi:10.1016/j.jcis.2008.10.038

    Article  CAS  Google Scholar 

  45. N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of nanosize TiO2: its photocatalytic performance. Mater. Chem. Phys. 104(2–3), 454–459 (2007). doi:10.1016/j.matchemphys.2007.04.003

    Article  CAS  Google Scholar 

  46. D.P. Macwan, P. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46(11), 3669–3686 (2011). doi:10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  47. S. Afshar, H. Samari Jahromi, N. Jafari, Z. Ahmadi, M. Hakamizadeh, Degradation of malachite green oxalate by UV and visible lights irradiation using nanophotocatalyst. Sci Iran 18(3), 772–779 (2011). doi:10.1016/j.scient.2011.06.007

    Article  CAS  Google Scholar 

  48. E. Amereh, S. Afshar, Photodegradation of acetophenone and toluene in water by nano-TiO2 powder supported on NaX zeolite. Mater. Chem. Phys. 120(2–3), 356–360 (2010). doi:10.1016/j.matchemphys.2009.11.019

    Article  CAS  Google Scholar 

  49. H.S. Jahromi, H. Taghdisian, S. Afshar, S. Tasharrofi, Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film. Surf. Coat. Technol. 203(14), 1991–1996 (2009). doi:10.1016/j.surfcoat.2009.01.034

    Article  CAS  Google Scholar 

  50. Y. Bessekhouad, D. Robert, J.V. Weber, N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency. J. Photochem. Photobiol. A 167(1), 49–57 (2004). doi:10.1016/j.jphotochem.2003.12.001

    Article  CAS  Google Scholar 

  51. S.-S. Hong, M.S. Lee, S.S. Park, G.-D. Lee, Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catal. Today 87(1–4), 99–105 (2003). doi:10.1016/j.cattod.2003.10.012

    Article  CAS  Google Scholar 

  52. J. Bahadur, D. Sen, S. Mazumder, P.U. Sastry, B. Paul, H. Bhatt, S.G. Singh, One-step fabrication of thermally stable TiO2/SiO2 nanocomposite microspheres by evaporation-induced self-assembly. Langmuir 28(31), 11343–11353 (2012). doi:10.1021/la3022886

    Article  CAS  Google Scholar 

  53. Y. Li, B.P. Bastakoti, M. Imura, S.M. Hwang, Z. Sun, J.H. Kim, S.X. Dou, Y. Yamauchi, Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chem. A Eur. J. 20(20), 6027–6032 (2014). doi:10.1002/chem.201304689

    Article  CAS  Google Scholar 

  54. T. Ohno, S. Tagawa, H. Itoh, H. Suzuki, T. Matsuda, Size effect of TiO2–SiO2 nano-hybrid particle. Mater. Chem. Phys. 113(1), 119–123 (2009). doi:10.1016/j.matchemphys.2008.07.034

    Article  CAS  Google Scholar 

  55. B. Neppolian, H. Yamashita, Y. Okada, H. Nishijima, M. Anpo, Preparation of TiO2 photocatalysts by multi-gelation and their photocatalytic reactivity for the degradation of 2-propanol. Chem. Lett. 33(3), 268–269 (2004)

    Article  CAS  Google Scholar 

  56. A. Mills, R.H. Davies, D. Worsley, Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417–425 (1993)

    Article  CAS  Google Scholar 

  57. N. Modirshahla, M.A. Behnajady, Photooxidative degradation of Malachite Green (MG) by UV/H2O2: influence of operational parameters and kinetic modeling. Dyes Pigm. 70(1), 54–59 (2006). doi:10.1016/j.dyepig.2005.04.012

    Article  CAS  Google Scholar 

  58. C. Párkányi, C. Boniface, J.J. Aaron, M. Maafi, A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments. Spectrochim. Acta Part A 49(12), 1715–1725 (1993). doi:10.1016/0584-8539(93)80239-7

    Article  Google Scholar 

  59. S.-A. Ong, O.-M. Min, L.-N. Ho, Y.-S. Wong, Comparative study on photocatalytic degradation of mono azo dye acid orange 7 and methyl orange under solar light irradiation. Water Air Soil Pollut. 223(8), 5483–5493 (2012). doi:10.1007/s11270-012-1295-1

    Article  CAS  Google Scholar 

  60. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004). doi:10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  61. H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M.A. Fox, R.B. Draper, Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir 5(1), 250–255 (1989). doi:10.1021/la00085a048

    Article  CAS  Google Scholar 

  62. L.B. Reutergådh, M. Iangphasuk, Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and us photocatalysis. Chemosphere 35(3), 585–596 (1997). doi:10.1016/S0045-6535(97)00122-7

    Article  Google Scholar 

  63. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004). doi:10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  64. H. Kazuhito, I. Hiroshi, F. Akira, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12R), 8269 (2005)

    Google Scholar 

Download references

Acknowledgments

Financial support from the Iran University of Science and Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Afshar, S., Zabihi, O. et al. Enhanced photocatalytic activities of TiO2–SiO2 nanohybrids immobilized on cement-based materials for dye degradation. Res Chem Intermed 42, 2963–2978 (2016). https://doi.org/10.1007/s11164-015-2190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2190-3

Keywords

Navigation