Skip to main content
Log in

A review of computational fluid dynamics applications in pressure-driven membrane filtration

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Ongoing advances in computational performance and numerics have led to computational fluid dynamics (CFD) becoming a ubiquitous modelling tool. However, CFD methods have only been adopted to simulate pressure-driven membrane filtration systems relatively recently. This paper reviews various approaches to describing the behaviour of these systems using CFD, beginning with the hydrodynamics of membrane channels, including discussion of laminar, turbulent, and transition flow regimes, with reference to the effects of osmotic pressure, concentration polarisation, and cake formation. The use of CFD in describing mass transfer through the membrane itself is then discussed, followed by some concluding comments on commercial membrane simulation packages and future research directions in membrane CFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott MB, Basco DR (1989) Computational fluid dynamics: an introduction for engineers. Longman Scientific & Technical, Harlow

    Google Scholar 

  • ANSYS Inc. (2010) ANSYS CFX-solver theory guide. ANSYS Inc., Canonsburg

    Google Scholar 

  • Bandini S, Vezzani D (2003) Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem Eng Sci 58(15):3303–3326

    Article  CAS  Google Scholar 

  • Belfort G (1989) Fluid mechanics in membrane filtration: recent developments. J Memb Sci 40(2):123–147

    Article  CAS  Google Scholar 

  • Belfort G, Nagata N (1985) Fluid mechanics and cross-flow filtration: some thoughts. Desalination 53(1–3):57–79

    Article  CAS  Google Scholar 

  • Berman AS (1953) Laminar flow in channels with porous walls. J Appl Phys 24(9):1232–1235

    Article  Google Scholar 

  • Bhattacharjee S, Chen JC, Elimelech M (2001) Coupled model of concentration polarization and pore transport in crossflow nanofiltration. AIChE J 47(12):2733–2745. doi:10.1002/aic.690471213

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Back SL, Kermode RI, Roco MC (1990) Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis. J Memb Sci 48(2–3):231–262

    Article  CAS  Google Scholar 

  • Bowen WR, Mukhtar H (1996) Characterisation and prediction of separation performance of nanofiltration membranes. J Memb Sci 112(2):263–274

    Article  CAS  Google Scholar 

  • Cao Z, Wiley DE, Fane AG (2001) CFD simulations of net-type turbulence promoters in a narrow channel. J Memb Sci 185(2):157–176

    Article  CAS  Google Scholar 

  • Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Da Costa AR, Fane AG, Fell CJD, Franken ACM (1991) Optimal channel spacer design for ultrafiltration. J Memb Sci 62(3):275–291

    Article  CAS  Google Scholar 

  • Da Costa AR, Fane AG, Wiley DE (1994) Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. J Memb Sci 87(1–2):79–98

    Article  CAS  Google Scholar 

  • Damak K, Ayadi A, Zeghmati B, Schmitz P (2004) A new Navier–Stokes and Darcy’s law combined model for fluid flow in crossflow filtration tubular membranes. Desalination 161(1):67–77

    Article  CAS  Google Scholar 

  • Déon S, Dutournié P, Limousy L, Bourseau P (2011) The two-dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: model validation. AIChE J 57(4):985–995. doi:10.1002/aic.12330

    Article  Google Scholar 

  • Ferziger JH, Peric M (1996) Computational methods for fluid dynamics. Springer, New York

    Book  Google Scholar 

  • Fimbres-Weihs GA, Wiley DE (2007) Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. J Memb Sci 306(1–2):228–243

    Article  CAS  Google Scholar 

  • Fimbres-Weihs GA, Wiley DE (2008) Numerical study of two-dimensional multi-layer spacer designs for minimum drag and maximum mass transfer. J Memb Sci 325(2):809–822

    Article  CAS  Google Scholar 

  • Fimbres-Weihs GA, Wiley DE (2010) Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem Eng Process 49(7):759–781

    Article  CAS  Google Scholar 

  • Fimbres-Weihs GA, Wiley DE, Fletcher DF (2006) Unsteady flows with mass transfer in narrow zigzag spacer-filled channels: a numerical study. Ind Eng Chem Res 45(19):6594–6603. doi:10.1021/ie060243l

    Article  CAS  Google Scholar 

  • Fletcher DF, Wiley DE (2004) A computational fluids dynamics study of buoyancy effects in reverse osmosis. J Memb Sci 245(1–2):175–181

    Article  CAS  Google Scholar 

  • Friedman M, Gillis J (1967) Viscous flow in a pipe with absorbing walls. J Appl Mech 34:819–827

    Article  Google Scholar 

  • Galowin LS, De Santis MJ (1974) Investigation of laminar flow in a porous pipe with variable wall suction. AIAA 12:1585–1594

    Article  Google Scholar 

  • Geissler S, Werner U (1995) Dynamic model of crossflow microfiltration in flat-channel systems under laminar flow conditions. Filtr Sep 32(6):533–537

    Article  CAS  Google Scholar 

  • Geraldes V, Semião V, de Pinho MN (2001) Flow and mass transfer modelling of nanofiltration. J Memb Sci 191(1–2):109–128

    Article  CAS  Google Scholar 

  • Ghidossi R, Veyret D, Moulin P (2006) Computational fluid dynamics applied to membranes: state of the art and opportunities. Chem Eng Process 45(6):437–454

    Article  CAS  Google Scholar 

  • Gouverneur C (1991) Thèse de Doctorat. Thèse de Doctorat, Institut National Polytechnique de Toulouse

  • Gupta BK, Levy EK (1976) Symmetrical laminar channel flow with wall suction. J Fluids Eng 98(3):469-474

    Google Scholar 

  • Huang L, Morrissey MT (1999) Finite element analysis as a tool for crossflow membrane filter simulation. J Memb Sci 155(1):19–30

    Article  CAS  Google Scholar 

  • Karode SK (2001) Laminar flow in channels with porous walls, revisited. J Memb Sci 191(1–2):237–241

    Article  CAS  Google Scholar 

  • Karode SK, Kumar A (2001) Flow visualization through spacer filled channels by computational fluid dynamics I.: pressure drop and shear rate calculations for flat sheet geometry. J Memb Sci 193(1):69–84

    Article  CAS  Google Scholar 

  • Keir GP (2012) Coupled modelling of hydrodynamics and mass transfer in membrane filtration. PhD thesis, Deakin University

  • Keir G, Jegatheesan V (2012) Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics. Membr Water Treat 3(2):77–98

    Article  Google Scholar 

  • Kim S, Hoek EMV (2005) Modeling concentration polarization in reverse osmosis processes. Desalination 186(1–3):111–128

    Article  CAS  Google Scholar 

  • Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech Digit Arch 177(1):133–166

    Article  CAS  Google Scholar 

  • Koutsou CP, Yiantsios SG, Karabelas AJ (2004) Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters. J Memb Sci 231(1–2):81–90

    Article  CAS  Google Scholar 

  • Koutsou CP, Yiantsios SG, Karabelas AJ (2007) Direct numerical simulation of flow in spacer-filled channels: effect of spacer geometrical characteristics. J Memb Sci 291(1–2):53–69

    Article  CAS  Google Scholar 

  • Koutsou CP, Yiantsios SG, Karabelas AJ (2009) A numerical and experimental study of mass transfer in spacer-filled channels: effects of spacer geometrical characteristics and Schmidt number. J Memb Sci 326(1):234–251

    Article  CAS  Google Scholar 

  • Krishna R, Wesselingh JA (1997) The Maxwell–Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911

    CAS  Google Scholar 

  • Kucera J (2010) Reverse osmosis: design, processes, and applications for engineers. Wiley, Hoboken

    Book  Google Scholar 

  • Lau KK, Abu Bakar MZ, Ahmad AL, Murugesan T (2009) Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel. J Memb Sci 343(1–2):16–33

    Article  CAS  Google Scholar 

  • Lee Y, Clark MM (1998) Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J Memb Sci 149(2):181–202

    Article  CAS  Google Scholar 

  • Li F, Meindersma GW, de Haan AB, Reith T (2002) Optimization of non-woven spacers by CFD and validation by experiments. Desalination 146(1–3):209–212

    Article  CAS  Google Scholar 

  • Li F, Meindersma W, de Haan AB, Reith T (2005) Novel spacers for mass transfer enhancement in membrane separations. J Memb Sci 253(1–2):1–12

    CAS  Google Scholar 

  • Miranda JM, Campos JBLM (2001) Concentration polarization in a membrane placed under an impinging jet confined by a conical wall—a numerical approach. J Memb Sci 182(1–2):257–270

    Article  CAS  Google Scholar 

  • Miyake Y, Tsujimoto K, Beppu H (1995) Direct numerical simulation of a turbulent flow in a channel having periodic pressure gradient. Int J Heat Fluid Flow 16(5):333–340

    Article  CAS  Google Scholar 

  • Mizushina T, Takeshita S, Unno G (1971) Study of flow in a porous tube with radial mass flux. J Chem Eng 4:135–142

    Article  Google Scholar 

  • Mohammad W, Pei L, Kadhum A (2002) Characterization and identification of rejection mechanisms in nanofiltration membranes using extended Nernst–Planck model. Clean Technol Environ Policy 4(3):151–156

    CAS  Google Scholar 

  • Mulder M (1991) Basic principles of membrane technology. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Munson BR, Young DF, Okiishi TH (2002) Fundamentals of fluid mechanics, 4th edn. Wiley, New York

    Google Scholar 

  • Nassehi V (1998) Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration. Chem Eng Sci 53(6):1253–1265

    CAS  Google Scholar 

  • Niwa M, Ohya H, Kuwahara E, Negishi Y (1988) Reverse osmotic concentration of aqueous 2-butanone (methyl ethyl ketone), tetrahydrofuran and ethyl acetate solutions. J Chem Eng Jpn 21(2):164–171

    Article  CAS  Google Scholar 

  • Onsager L (1945) Theories and problems of liquid diffusion. Ann N Y Acad Sci 46(5):241–265. doi:10.1111/j.1749-6632.1945.tb36170.x

    Article  CAS  Google Scholar 

  • Pellerin E, Michelitsch E, Darcovich K, Lin S, Tam CM (1995) Turbulent transport in membrane modules by CFD simulation in two dimensions. J Memb Sci 100(2):139–153

    Article  CAS  Google Scholar 

  • Ranade VV, Kumar A (2006a) Comparison of flow structures in spacer-filled flat and annular channels. Desalination 191(1–3):236–244

    Article  CAS  Google Scholar 

  • Ranade VV, Kumar A (2006b) Fluid dynamics of spacer filled rectangular and curvilinear channels. J Memb Sci 271(1–2):1–15

    Article  CAS  Google Scholar 

  • Richardson CJ, Nassehi V (2003) Finite element modelling of concentration profiles in flow domains with curved porous boundaries. Chem Eng Sci 58(12):2491–2503

    Article  CAS  Google Scholar 

  • Rosén C, Trägårdh C (1993) Computer simulations of mass transfer in the concentration boundary layer over ultrafiltration membranes. J Memb Sci 85(2):139–156

    Article  Google Scholar 

  • Sablani SS, Goosen MFA, Al-Belushi R, Wilf M (2001) Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141(3):269–289

    Article  CAS  Google Scholar 

  • Santos JLC, Geraldes V, Velizarov S, Crespo JG (2007) Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J Memb Sci 305(1–2):103–117

    Article  CAS  Google Scholar 

  • Schäfer AI (2001) Natural organics removal using membranes: principles, performance and cost. Technomic Publishing, Lancaster

    Book  Google Scholar 

  • Schmitz P, Prat M (1995) 3-D Laminar stationary flow over a porous surface with suction: description at pore level. AIChE J 41(10):2212–2226

    Article  CAS  Google Scholar 

  • Schwinge J, Wiley DE, Fletcher DF (2002a) A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules. Desalination 146(1–3):195–201

    Article  CAS  Google Scholar 

  • Schwinge J, Wiley DE, Fletcher DF (2002b) Simulation of the flow around spacer filaments between channel walls. 2. Mass-transfer enhancement. Ind Eng Chem Res 41(19):4879–4888. doi:10.1021/ie011015o

    Article  CAS  Google Scholar 

  • Schwinge J, Wiley DE, Fletcher DF (2002c) Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Ind Eng Chem Res 41(12):2977–2987. doi:10.1021/ie010588y

    Article  CAS  Google Scholar 

  • Sivashinsky G, Yakhot V (1985) Negative viscosity effect in large-scale flows. Phys Fluids 28(4):1040–1042

    Article  Google Scholar 

  • Szymczyk A, Fievet P (2005) Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J Memb Sci 252(1–2):77–88

    Article  CAS  Google Scholar 

  • Tanimura S, Nakao S-I, Kimura S (1991) Transport analysis of reverse osmosis of organic aqueous solutions. J Chem Eng Jpn 24(3):364–371

    Article  CAS  Google Scholar 

  • Wardeh S, Morvan HP (2008) CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination. Chem Eng Res Des 86(10):1107–1116

    Article  CAS  Google Scholar 

  • Wijmans JG, Nakao S, Van Den Berg JWA, Troelstra FR, Smolders CA (1985) Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration. J Memb Sci 22(1):117–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the financial assistance provided by a Deakin University Postgraduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Keir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keir, G., Jegatheesan, V. A review of computational fluid dynamics applications in pressure-driven membrane filtration. Rev Environ Sci Biotechnol 13, 183–201 (2014). https://doi.org/10.1007/s11157-013-9327-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9327-x

Keywords

Navigation