Skip to main content
Log in

Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Two freshwater macrophytes, Ottelia alismoides and O. acuminata, were grown at low (mean 5 μmol L−1) and high (mean 400 μmol L−1) CO2 concentrations under natural conditions. The ratio of PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides, this ratio was 2.8 and 5.9 when grown at high and low CO2, respectively, as a result of a twofold increase in PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species, while NAD-ME activity was high and increased with PEPC activity in O. alismoides. These results suggest that O. alismoides might perform a type of C4 metabolism with NAD-ME decarboxylation, despite lacking Kranz anatomy. The C4-activity was still present at high CO2 suggesting that it could be constitutive. O. alismoides at low CO2 showed diel acidity variation of up to 34 μequiv g−1 FW indicating that it may also operate a form of crassulacean acid metabolism (CAM). pH-drift experiments showed that both species were able to use bicarbonate. In O. acuminata, the kinetics of carbon uptake were altered by CO2 growth conditions, unlike in O. alismoides. Thus, the two species appear to regulate their carbon concentrating mechanisms differently in response to changing CO2. O. alismoides is potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species with evidence for C4, CAM or some other metabolism involving organic acids, and are worthy of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

Alk:

Alkalinity

CAM:

Crassulacean acid metabolism

CCM:

Carbon dioxide concentrating mechanism

DIC:

Dissolved inorganic carbon

DTT:

Dithiothreitol

FW:

Fresh weight

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

LDH:

Lactate dehydrogenase

MDH:

Malate dehydrogenase

NAD(P)-ME:

NAD(P)-malic enzyme

OAA:

Oxaloacetate

PEP:

Phosphoenol pyruvate

PEPC:

PEP carboxylase

PEPCK:

PEP carboxykinase

PGK:

Phosphoglycerate kinase

PPDK:

Pyruvate phosphate dikinase

RuBisCO:

Ribulose 1,5-bisphosphate carboxylase–oxygenase

RuBP:

Ribulose 1,5-bisphosphate

References

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Beer S (1989) Photosynthesis and photorespiration of marine angiosperms. Aquat Bot 34:153–166

    Article  CAS  Google Scholar 

  • Black MA, Maberly SC, Spence DHN (1981) Resistances to carbon dioxide fixation in 4 submerged freshwater macrophytes. New Phytol 89:557–568

    Article  CAS  Google Scholar 

  • Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, vol 32. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 63–80

    Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  CAS  PubMed  Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brain RA, Solomon KR (2007) A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat Protoc 2:979–987

    Article  CAS  PubMed  Google Scholar 

  • Brown JMA, Dromgoole FI, Towsey MW, Browse J (1974) Photosynthesis and photorespiration in aquatic macrophytes. R Soc N Z Bull 12:243–249

    Google Scholar 

  • Browse JA, Dromgoole FI, Brown JMA (1977) Photosynthesis in aquatic macrophyte Egeria densa. 1. CO2-14 fixation at natural CO2 concentrations. Aust J Plant Physiol 4:169–176

    Article  CAS  Google Scholar 

  • Casati P, Lara MV, Andreo CS (2000) Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L-Y, Chen J-M, Gituru RW, Wang Q-F (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Cook CDK, Urmikonig K (1984) A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat Bot 20:131–177

    Article  Google Scholar 

  • Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    Article  CAS  PubMed  Google Scholar 

  • Degroote D, Kennedy RA (1977) Photosynthesis in Elodea canadensis Michx. 4 carbon acid synthesis. Plant Physiol 59:1133–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Elzenga JTM, Prins HBA (1987) Light induced polarity of redox reactions in leaves of Elodea canadensis Michx. Plant Physiol 85:239–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farmer AM, Maberly SC, Bowes G (1986) Activities of carboxylation enzymes in freshwater macrophytes. J Exp Bot 37:1568–1573

    Article  CAS  Google Scholar 

  • Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197:177–185

    Article  CAS  PubMed  Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101:103–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol 65:331–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol Oceanogr 43:408–419

    Article  CAS  Google Scholar 

  • Jansson M, Karlsson J, Jonsson A (2012) Carbon dioxide supersaturation promotes primary production in lakes. Ecol Lett 15:527–532

    Article  PubMed  Google Scholar 

  • Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 49–88

    Chapter  Google Scholar 

  • Keeley JE (1981) Isoetes howelli—a submerged aquatic CAM plant. Am J Bot 68:420–424

    Article  CAS  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  CAS  Google Scholar 

  • Klavsen SK, Maberly SC (2009) Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshw Biol 54:105–118

    Article  CAS  Google Scholar 

  • Klavsen SK, Madsen TV, Maberly SC (2011) Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. Photosynth Res 109:269–279

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132

    Article  Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598

    Article  CAS  Google Scholar 

  • Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Funct Ecol 12:99–106

    Article  Google Scholar 

  • Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405

    Article  CAS  Google Scholar 

  • Maberly SC, Spence DHN (1983) Photosynthetic inorganic carbon use by freshwater plants. J Ecol 71:705–724

    Article  CAS  Google Scholar 

  • Maberly SC, Barker PA, Stott AW, De Ville MM (2013) Catchment productivity control CO2 emissions from lakes. Nat Clim Change 3:391–394

    Article  CAS  Google Scholar 

  • Madsen TV (1987a) Interactions between internal and external CO2 pools in the photosynthesis of the aquatic CAM plants Littorella uniflora (L.) Aschers and Isoetes lacustris L. New Phytol 106:35–50

    Article  Google Scholar 

  • Madsen TV (1987b) Sources of inorganic carbon acquired through CAM in Littorella uniflora (L.) Aschers. J Exp Bot 38:367–377

    Article  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monson RK, Moore BD, Ku MSB, Edwards GE (1986) Co-function of C3-and C4-photosynthetic pathways in C3, C4 and C3–C4 intermediate Flaveria species. Planta 168:493–502

    Google Scholar 

  • Moore B, Monson RK, Ku MSB, Edwards GE (1988) Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3–C4 intermediate Flaveria ramosissima. Plant Cell Physiol 29:999–1006

    Google Scholar 

  • Newman JR, Raven JA (1995) Photosynthetic carbon assimilation in Crassula helmsii. Oecologia 101:494–499

    Article  Google Scholar 

  • Ogren WL (2003) Affixing the O to Rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76:53–63

    Article  CAS  PubMed  Google Scholar 

  • Peisker M (1986) Models of carbon metabolism in C3–C4 intermediate plants as applied to the evolution of C4 photosynthesis. Plant Cell Environ 9:627–635

    Google Scholar 

  • Raghavendra AS, Sage RF (2011) C4 Photosynthesis and Related CO2 Concentrating Mechanisms Introduction. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, vol 32. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 17–25

    Chapter  Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev 45:167–220

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B 367:493–507

    Article  CAS  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  CAS  PubMed  Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiskind JB, Seamon PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87:686–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiskind JB, Madsen TV, VanGinkel LC, Bowes G (1997) Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220

    Article  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93:79–88

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Christin P-A, Edwards EJ (2011) The C4 plant lineages of planet earth. J Exp Bot 62:3155–3169

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Bowes G (1983) Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiol 73:488–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  • Talling JF (1985) Inorganic carbon reserves of natural waters and eco-physiological consequences of their photosynthetic depletion: microalgae. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by photosynthetic organisms. The American Society of Plant Physiologists, Rockville, pp 404–420

    Google Scholar 

  • Ueno O, Samejima M, Muto S, Miyachi S (1988) Photosynthetic characteristics of an amphibious plant, Elocharis vivipara. Expression of C4 and C3 modes in contrasting environments. Proc Natl Acad Sci USA 85:6733–6737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Von Caemmerer S (2000) Biochemical models of leaf photosynthesis, CSIRO, Collingwood, pp 123–140

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    Article  CAS  PubMed  Google Scholar 

  • Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for Crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. N Z J Mar Freshw Res 22:231–235

    Article  CAS  Google Scholar 

  • Winter K, Foster JG, Edwards GE, Holtum JAM (1982) Intracellular-localization of enzymes of carbon metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing Crassulacean acid metabolism. Plant Physiol 69:300–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N (2012) Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS One 7:e37438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2010T2S14, 2013T1S0021) and the National Scientific Foundation of China (30700083). Two anonymous referees helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyan Yin or Stephen C. Maberly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yin, L., Jiang, HS. et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynth Res 121, 285–297 (2014). https://doi.org/10.1007/s11120-013-9950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9950-y

Keywords

Navigation