Skip to main content
Log in

Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Yield mapping is increasingly used in agricultural management. The distributions produced from the majority of these datasets are non-normal and can be misleading if used in the decision making process. Numerous studies over the last 25 years, published in various formats, have highlighted the sources of errors that contribute to this non-normality and have proposed a variety of post-processing methods to reduce their effect. A comprehensive cataloging of the types of errors present and methods used to remove them as well as the approaches to and effects of post-processing error removal is needed. This review identifies four types of yield mapping measurement errors: issues associated with harvesting dynamics of the combine harvester, the continuous measurement of moisture and yield, the accuracy of positional data and errors caused by the harvester operator. Methods to remove errors range from simple thresholds to complex routines that incorporate harvest position and local yield variation. The benefits of applying filters have focused on the removal of erroneous yield variation based on simple descriptive statistics, the creation of yield distributions that show greater normality and the decrease of the nugget-variance relationship and prediction variance estimated in yield map interpolation. Publication of these parameters should accompany the interpolated yield map for both unprocessed and post-processed datasets to provide an insight into the reliability of the collected measurements and the effectiveness of the routines implemented. Examples from commercial growers in Western Australia are used to reinforce the review’s findings and highlight the potential for extensions to current methods to remove errors associated with harvester speed, narrow finishes and harvester turns and overlaps. This paper suggests extending the current routine implementation of error removal towards an automated post-processing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arslan, S., & Colvin, T. S. (2002a). An evaluation of the response of yield monitors and combines to varying yields. Precision Agriculture, 3, 107–122.

    Article  Google Scholar 

  • Arslan, S., & Colvin, T. S. (2002b). Grain yield mapping: Yield sensing, yield reconstruction, and errors. Precision Agriculture, 3, 135–154.

    Article  Google Scholar 

  • Atwood, J. A., Shaik, S., & Watts, M. (2003). Are crop yields normally distributed? A reexamination. American Journal of Agricultural Economics, 85(4), 888–901.

    Article  Google Scholar 

  • Bachmaier, M., & Auernhammer, H. (2005). Yield mapping based on robust paraboloid cones in butterfly and elliptic neighbourhoods.. In J. V. Stafford (ed.), Precision agriculture ‘05: Proceedings of the 5th European conference on precision agriculture (pp. 741–751). Wageningen: Wageningen Academic Publishers.

  • Beal, J. P., & Tian, L. F. (2001). Time shift evaluation to improve yield map quality. Applied Engineering in Agriculture, 17(3), 385–390.

    Google Scholar 

  • Beck, A. D., Roades, J. P., & Searcy, S. W. (1999). Post-process filtering techniques to improve yield map accuracy. Paper No. 991048. ASAE, St. Joseph, MI, USA.

  • Beck, A. D., Searcy, S. W., & Roades, J. P. (2001). Yield data filtering techniques for improved map accuracy. Applied Engineering in Agriculture, 17(4), 432.

    Google Scholar 

  • Bethea, R. M., Duran, B. S., & Boullion, T. L. (1985). Statistical methods for engineers and scientists (2nd ed.). New York: M. Dekker.

    Google Scholar 

  • Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2–3), 215–233.

    Article  Google Scholar 

  • Blackmore, B.S. (2003). The role of yield maps in precision farming. National Soil Resources Institute. PhD thesis. Cranfield University, Great Britain. 170 pp.

  • Blackmore, S., & Marshall, C. (1996). Yield mapping: Errors and algorithms. In P. C. Robert, A. H. Rust, & W. E. Larson (Eds.), Proceedings of the 3rd international conference on precision agriculture (pp. 403–415). Madison: ASA/CSSA/SSSA.

    Google Scholar 

  • Blackmore, S., & Moore, M. (1999). Remedial correction of yield map data. Precision Agriculture, 1(1), 53–66.

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographic information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Chung, S. O., Sudduth, K. A., & Drummond, S. T. (2002). Determining yield Monitoring system delay time with geostatistical and data segmentation approaches. Transactions of the ASAE, 45(4), 915–926.

    Google Scholar 

  • Drummond, S. (2005). Yield Editor 1.02 Beta Version. http://www.ars.usda.gov/Services/docs.htm?docid=4776. Accessed 29 Oct 2013.

  • Drummond, S. T., Fraisse, C. W., & Sudduth, K. A. (1999). Vector method for determining harvest area using combine position data. In P. C. Robert, A. H. Rust and W. E. Larson (eds.), Proceedings of the 4th international conference on precision agriculture (pp. 1141–1150). Madison, WI: ASA, CSSA, and SSSA.

  • Drummond, S. T., & Sudduth, K. A. (2005). Analysis of errors affecting yield map accuracy. In D. J. Mulla (ed.), Proceedings of the 7th international conference on precision agriculture (pp. 1478–1490),CD-ROM. St. Paul, MN: Precision Agriculture Center, University of Minnesota.

  • Fulton, J. P., Sobolik, C. J., Shearer, S. A., Higgins, S. F., & Burks, T. F. (2009). Grain yield monitor flow sensor accuracy for simulated varying field slopes. Applied Engineering in Agriculture, 25(1), 15–21.

    Article  Google Scholar 

  • Griffin, T.W., Brown, J.P.,& Lowenberg-DeBoer, J. (2005). Yield monitor data analysis protocol: A primer in the management and analysis of precision agriculture data.. Department of Agricultural Economics. Purdue University, Lafayette, IN, USA. http://www.purdue.edu/ssmc/publications/YieldDataAnalysis.pdf. Accessed 29 Oct 2013.

  • Griffin, T. W., Dobbins, C. L., Vyn, T., Florax, R. J. G. M., & Lowenberg-DeBoer, J. (2008). Spatial analysis of yield monitor data: Case studies of on-farm trials and farm management decision-making. Precision Agriculture, 9, 269–283.

    Article  Google Scholar 

  • Han, S., Schneider, S. M., Rawlins, S. L., & Evans, R. G. (1997). A bitmap method for determining effective combine cut width in yield mapping. Transactions of the ASAE, 40(2), 485–490.

    Article  Google Scholar 

  • Harri, A., Erdem, C., Coble, K. H., & Knight, T. O. (2009). Crop yield distributions: A reconciliation of previous research and statistical tests for normality. Review of Agricultural Economics, 31(1), 163–182.

    Article  Google Scholar 

  • Hennessy, D. A. (2009). Crop yield skewness and the normal distribution. Journal of Agricultural and Resource Economics, 34(1), 34–52.

    Google Scholar 

  • Joernsgaard, B., & Halmoe, S. (2003). Intra-field yield variation over crops and years. European Journal of Agronomy, 19(1), 23–33.

    Article  Google Scholar 

  • Just, R. E., & Weninger, Q. (1999). Are crop yields normally distributed? American Journal of Agricultural Economics, 81(2), 287–304.

    Article  Google Scholar 

  • Kastens D.L., T.L. Kastens, R. Taylor, & Price, K.P. (2000). Using geographical techniques and an understanding of combine operation for generating spatially continuous yield maps from yield monitor data. In Proceedings of the second international conference on geospatial information in agriculture and forestry (vol. II, pp. 414–421). Lake Buena Vista, FL, 10–12 January, 2000.

  • Lamb, J. A., Anderson, J. L., Malzer, G. L., Vetch, J. A., Dowdy, R. H., Onken, D. S., & Ault, K. I. (1995). Perils of monitoring grain yield on-the- go. In P. C. Robert, R. H. Rust and W. E. Larson (eds.), Proceedings of the second international conference on site-specific management for agricultural systems (pp. 87–91). Madison, USA: ASA-CSSA-SSSA.

  • Lark, R. M., Stafford, J. V., & Bolam, H. C. (1997). Limitations on the spatial resolution of yield mapping for combinable crops. Journal of Agricultural Engineering Research, 66, 183–193.

    Article  Google Scholar 

  • Lee, D. H., Sudduth, K. A., Drummond, S. T., Chung, S. O., & Myers, D. B. (2012). Automated yield map delay identification using phase correlation methodology. Transactions of the ASABE, 55(3), 743–752.

    Article  Google Scholar 

  • Minasny, B., McBratney, A.B.,& Whelan, B. M. (2005). VESPER version1.62Variogram Estimation and Spatial Prediction plus ERror. Australian Centre for Precision Agriculture. http://sydney.edu.au/agriculture/pal/software/vesper.shtml. Accessed 29 Oct 2013.

  • Moore, M. R. (1998). An investigation into the accuracy of yield maps and their subsequent use in crop management. PhD thesis, Silsoe College. Cranfield University, UK. 371 pp.

  • Noack, P. H., Muhr, T., & Demmel, M. (2003a). An algorithm for automatic detection and elimination of defective yield data. In J.V.Stafford and A. Werner (eds.), Proceedings of the 4th European conference on precision agriculture (pp. 445–451). Wageningen: Wageningen Academic Publishers.

  • Noack, P. H., Muhr, T., & Demmel, M. (2003b). Relative accuracy of different yield mapping systems installed on a single combine harvester. In J.V.Stafford and A. Werner (eds.), Proceedings of the 4th European conference on precision agriculture (pp. 445–451). Wageningen: Wageningen Academic Publishers.

  • Noack, P. H., Muhr, T., & Demmel, M. (2005). Effect of interpolation methods and filtering on the quality of yield maps. In J. V. Stafford (ed.), Precision agriculture ‘05: Proceedings of the 5th European conference on precision agriculture (pp. 701–707). Wageningen: Wageningen Academic Publishers.

  • Nolan, S. C., Haverland, G. W., Goddard, T. W., Green, M., & Penny, D. C. (1996). Building a yield map from geo-referenced harvest measurement. In P. C. Robert, R. H. Rust and W. E. Larson (eds.), Proceedings of the 3rd international conference on precision agriculture (pp. 885–893). Madison, WI: ASA, CSSA, SSSA.

  • Pierce, F. J., Anderson, N. W., Colvin, T. S., Schueller, J. K., Humburg, D. S., & McLaughlin, N. B. (1997). Yield Mapping. In The state of site-specific management for agricultural systems (pp. 211–243). Madison, WI: ASA, CSSA and SSSA.

  • Ping, J. L., & Dobermann, A. (2005). Processing of yield map data. Precision Agriculture, 6(2), 193–212.

    Article  Google Scholar 

  • Ramirez, O. A., Misra, S., & Field, J. (2003). Crop-yield distributions revisited. American Journal of Agricultural Economics, 85(1), 108–120.

    Article  Google Scholar 

  • Rands, M. (1995). The development of an expert filter to improve the quality of yield data. MSc thesis, Department of Agriculture and Environmental Engineering. Silsoe College, Cranfield University. UK.

  • Reitz, P., & Kutzbach, H. D. (1996). Investigations on a particular yield mapping system for combine harvesters. Computers and Electronics in Agriculture, 14(2–3), 137–150.

    Article  Google Scholar 

  • Robertson, M. J., Lyle, G., & Bowden, J. W. (2008). Within-field variability of wheat yield and economic implications for spatially variable nutrient management. Field Crops Research, 105, 211–220.

    Article  Google Scholar 

  • Robinson, T. P., & Metternicht, G. (2005). Comparing the performance of techniques to improve the quality of yield maps. Agricultural Systems, 85, 19–41.

    Article  Google Scholar 

  • Shearer, S.A., Higgins, S.G., McNeill, S.G., Watkins, G.A., Barnhisel, R. I., Doyle, J. C., Leach, J. H., & Fulton, J. P. (1997). Data filtering and correction techniques for generating yield maps from multiple combine systems. Paper No. 971034. ASAE, St Joseph, MI, USA.

  • Shearer, S. A., Higgins, S. G., McNeill, S. G., Watkins, G. A., Barnhisel, R. I., Doyle, J. C., Leach, J. H., & Fulton, J. P. (2005). Post-Processing Correction to Improve the Accuracy of Yield Monitor Data in Grain Crops. In D. J. Mulla (ed.), Proceedings of the seventh international conference on precision agriculture (pp. 173–186). MN, USA: Precision Agriculture Center, University of Minnesota.

  • Simbahan, G. C., Dobermann, A., & Ping, J. L. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96(4), 1091–1102.

    Article  Google Scholar 

  • Stafford, J. V., Ambler, B., Lark, R. M., & Catt, J. (1996). Mapping and interpreting the yield variation in cereal crops. Computers and Electronics in Agriculture, 14(2–3), 101–119.

    Article  Google Scholar 

  • Sudduth, K. A., & Drummond, S. T. (2007). Yield Editor: Software for removing errors from crop yield maps. Agronomy Journal, 99, 1471–1482.

    Article  Google Scholar 

  • Taylor, R. K., Kastens, D. L., & Kastens, T. L. (2000). Creating yield maps from yield monitoring data using multipurpose grid mapping (MPGM). In P. C. Robert, R. H. Rust and W. E. Larsen (eds.) Proceedings of the fifth international conference on precision agriculture, CD-ROM. Madison, WI: ASA, CSSA and SSA.

  • Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production. Agronomy Journal, 99, 1366–1376.

    Article  Google Scholar 

  • Taylor, J., Whelan, B., Thylen, L., Gilbertsson, M.,& Hassall, J. (2005). Monitoring wheat protein content on-harvester: Australian experiences. In J.V. Stafford (ed.) Proceedings of the 5th European conference on precision agriculture (pp. 369–375). Wageningen: Wageningen Academic Publishers.

  • Thylen, L., Algerbo, P. A., & Giebel, A. (2000). An expert filter removing erroneous yield data. In P. C. Robert, R. H. Rust and W. E. Larsen (eds.), Proceedings of the fifth international conference on precision agriculture (pp. 1–9), CD-ROM. Madison, WI: USA. ASA, CSSA.

  • Thylen, L., & Murphy, D. P. L. (1996). The control of errors in momentary yield data from combine harvesters. Journal of Agricultural Engineering Research, 64(4), 271–278.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Statistical methods in soil and land resource survey. Oxford: Oxford University Press.

    Google Scholar 

  • Whelan, B. M., & McBratney, A. B. (1997). Sorghum grain flow convolution within a conventional combine harvester. In J. V. Stafford (ed.), Precision Agriculture ‘97: Proceedings of the first European conference on precision agriculture (pp. 759–766). Bios: Oxford.

  • Whelan, B. M., McBratney, A. B., & Minasny, B. (2001). VESPER - spatial prediction software for precision agriculture. In G. Grenier, S. Blackmore. (eds.), Proceedings of the 3rd European Conference on Precision Agriculture. Montpellier, France. pp. 139-144.

  • Wong, M. T. F., & Asseng, S. (2006). Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant and Soil, 283, 203–215.

    Article  CAS  Google Scholar 

  • Zhao, C., Huang, W., Chen, L., Meng, Z., Wang, Y., & Xu, F. (2010). A harvest area measurement system based on ultrasonic sensors and DGPS for yield map correction. Precision Agriculture, 11(2), 163–180.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CSIRO and the growers for access to their yield data used in this paper. Greg Lyle is a PhD candidate supported by a University of Adelaide Faculty of Sciences divisional scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyle, G., Bryan, B.A. & Ostendorf, B. Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development. Precision Agric 15, 377–402 (2014). https://doi.org/10.1007/s11119-013-9336-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-013-9336-3

Keywords

Navigation