Skip to main content
Log in

Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The bioavailability of a development candidate active pharmaceutical ingredient (API) was very low after oral dosing in dogs. In order to improve bioavailability, we sought to increase the dissolution rate of the solid form of the API. When traditional methods of forming salts and amorphous material failed to produce a viable solid form for continued development, we turned to the non-traditional approach of cocrystallization.

Methods

A crystal engineering approach was used to design and execute a cocrystal screen of the API. Hydrogen bonding between the API and pharmaceutically acceptable carboxylic acids was identified as a viable synthon for associating multiple components in the solid state. A number of carboxylic acid guest molecules were tested for cocrystal formation with the API.

Results

A cocrystal containing the API and glutaric acid in a 1:1 molecular ratio was identified and the single crystal structure is reported. Physical characterization of the cocrystal showed that it is unique regarding thermal, spectroscopic, X-ray, and dissolution properties. The cocrystal solid is nonhygroscopic, and chemically and physically stable to thermal stress. Use of the cocrystal increased the aqueous dissolution rate by 18 times as compared to the homomeric crystalline form of the drug. Single dose dog exposure studies confirmed that the cocrystal increased plasma AUC values by three times at two different dose levels.

Conclusions

APIs that are non-ionizable or demonstrate poor salt forming ability traditionally present few opportunities for creating crystalline solid forms with desired physical properties. Cocrystals are an additional class of crystalline solid that can provide options for improved properties. In this case, a crystalline molecular complex of glutaric acid and an API was identified and used to demonstrate an improvement in the oral bioavailability of the API in dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–419 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. Calculated using Advanced Chemistry Development (ACD/Labs) Software Solaris V4.67 (1994–2005 ACD/Labs).

  3. M. Yazdanian, S. L. Glynn, J. L. Wright, and A. Hawi. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 15(9):1490–1494 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. S. L. Childs, L. C. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly, and G. P. Stahly. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoexetine hydrochloride with benzoic, succinic, and fumaric acids. J. Am. Chem. Soc. 126:13335–13342 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. J. F. Remenar, S. L. Morissette, M. L. Peterson, B. Moulton, J. M. MacPhee, H. R. Guzman, and O. Almarsson. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc. 125:8456–8457 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. J. W. Bettis, J. L. Lach, and J. Hood. Effect of complexation with phenobarbital on biologic availability of theophylline from 3 tablet formulations. Am. J. Hosp. Pharm. 30(3):240–243 (1973).

    PubMed  CAS  Google Scholar 

  7. J. Bernstein, M. C. Etter, and L. Leiserowitz. The role of hydrogen bonding in molecular assemblies. In H.-B. D. Buergi, and Jack D (eds.), Struct. Correl., VCH, Weinheim, Germany, 1994, pp. 431–507.

    Chapter  Google Scholar 

  8. I. D. H. Oswald, D. R. Allan, P. A. McGregor, W. D. S. Motherwell, S. Parsons, and C. R. Pulham. The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. Acta Crystallogr. Sect. B-Struct. Commun. 58:1057–1066 (2002).

    Article  Google Scholar 

  9. N. Sardone, G. Bettinetti, and M. Sorrenti. Trimethoprim-sulfadimidine 1:2 molecular complex monohydrate. Acta Crystallogr., C Cryst. Struct. Commun. 53:1295–1299 (1997).

    Article  Google Scholar 

  10. S. Nakao, S. Fujii, T. Sakaki, and K. I. Tomita. Crystal and molecular-structure of 2-1 molecular-complex of theophylline with phenobarbital. Acta Crystallogr. Sect. B-Struct. Commun. 33:1373–1378 (1977) (MAY13).

    Article  Google Scholar 

  11. M. R. Caira, T. G. Dekker, and W. Liebenberg. Structure of a 1:1 complex between the anthelmintic drug mebendazole and propionic acid. J. Chem. Crystallogr. 28(1):11–15 (1998).

    Article  CAS  Google Scholar 

  12. M. C. Etter, and G. M. Frankenbach. Hydrogen-bond directed cocrystallization as a tool for designing acentric organic solids. Chem. Mater. 1(1):10–12 (1989).

    Article  CAS  Google Scholar 

  13. C. B. Aakeroy. Crystal engineering: strategies and architectures. Acta Crystallogr. Sect. B-Struct. Commun. 53:569–586 (1997).

    Article  Google Scholar 

  14. M. C. Etter and D. A. Adsmond. The use of cocrystallization as a method of studying hydrogen-bond preferences of 2-aminopyrimidine. J. Chem. Soc., Chem. Commun. 8:589–591 (1990).

    Article  Google Scholar 

  15. G. R. Desiraju. Supramolecular synthons in crystal engineering—a new organic-synthesis. Angew. Chem.-Int. Edit. Engl. 34(21):2311–2327 (1995).

    Article  CAS  Google Scholar 

  16. A. Nangia and G. R. Desiraju. Supramolecular structures—reason and imagination. Acta Crystallogr. Sect. A 54:934–944 (1998).

    Article  Google Scholar 

  17. B. Rodriguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodriguez-Hornedo. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 56(3):241–274 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. J. J. Kane, T. Nguyen, J. Xiao, F. W. Fowler, and J. W. Lauher. The host guest co-crystal approach to supramolecular structure. Mol. Cryst. Liquid Cryst. 356:449–458 (2001).

    Article  CAS  Google Scholar 

  19. P. Vishweshwar, A. Nangia, and V. M. Lynch. Molecular complexes of homologous alkanedicarboxylic acids with isonicotinamide: X-ray crystal structures, hydrogen bond synthons, and melting point alternation. Cryst. Growth Des. 3(5):783–790 (2003).

    Article  CAS  Google Scholar 

  20. P. Vishweshwar, A. Nangia, and V. M. Lynch. Supramolecular synthons in phenol-isonicotinamide adducts. Crystengcomm.: 164–168 (2003).

  21. M. C. Etter. Aggregate structures of carboxylic acids and amides. Isr. J. Chem. 25(3–4):312–319 (1985).

    CAS  Google Scholar 

  22. SMART Version 5.55, 2000, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.

  23. SAINT Version 6.02, 1999, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.

  24. SHELXTL V5.10, 1997, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.

  25. A. J. C. Wilson (ed.), International Tables for X-ray Crystallography, Volume C. Kynoch, Academic, Dordrecht, 1992, Tables 6.1.1.4 (pp. 500–502) and 4.2.6.8 (pp. 219–222).

  26. C. G. S. Wermuth. P. H. Handbook of Pharmaceutical Salts; Properties, Selection, and Use (P. H. W. Stahl, C. G., ed.). Verlag Helvitica Chimica Acta, Zurich and Wiley-VCH: Weinheim, 306 (2002).

  27. W. C. McCrone, Jr., Fusion Methods in Chemical Microscopy. Interscience, New York, 1957.

    Google Scholar 

  28. A. Kofler. Behavior of crystalline solid solution during melting and crystallization. Mikroskopie. 11(5–6):140–155 (1956).

    PubMed  CAS  Google Scholar 

  29. M. Kunhert-Brandstaetter. 40 Years of Kofler methods. Pharma Int. (Engl. Ed.) 5:5–11 (1971).

    Google Scholar 

  30. R. N. Rai, and K. B. R. Varma. Phase diagram and dielectric studies of binary organic materials. Mater. Lett. 44(5):284–293 (2000).

    Article  CAS  Google Scholar 

  31. U. S. Rai and S. George. Some thermochemical studies on binary faceted organic eutectics and 1:1 molecular complexes. J. Therm. Anal. 46(6):1809–1820 (1996).

    Article  CAS  Google Scholar 

  32. N. R. Jagannathan and C. N. R. Rao. A 13C NMR spectroscopic study of the phase transitions of alkane dicarboxylic acids in the solid state. Chem. Phys. Lett. 140(1):46–50 (1987).

    Article  CAS  Google Scholar 

  33. S. J. Nehm, B. Rodriguez-Spong, and N. Rodriguez-Hornedo. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 6(2):592–600 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ken Hardcastle at the Emory University Chemistry Department X-Ray Diffraction Center for collecting and solving the single crystal structure of the cocrystal. The authors also acknowledge the support of Drs. Phil Goliber and Leah Lipsich of Purdue Pharma L. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, D.P., Childs, S.L., Giordano, J. et al. Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API. Pharm Res 23, 1888–1897 (2006). https://doi.org/10.1007/s11095-006-9032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9032-3

Key words

Navigation