Skip to main content
Log in

Spiral modes supported by circular dielectric tubes and tube segments

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The modal properties of curved dielectric slab waveguides are investigated. We consider quasi-confined, attenuated modes that propagate at oblique angles with respect to the axis through the center of curvature. Our analytical model describes the transition from scalar 2-D TE/TM bend modes to lossless spiral waves at near-axis propagation angles, with a continuum of vectorial attenuated spiral modes in between. Modal solutions are characterized in terms of directional wavenumbers and attenuation constants. Examples for vectorial mode profiles illustrate the effects of oblique wave propagation along the curved slab segments. For the regime of lossless spiral waves, the relation with the guided modes of corresponding dielectric tubes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Other scenarios, like the evanescent excitation through a slab, with potentially different layering, placed “underneath” the bend at a small distance, would lead to a different rule of translating \(k_y\) to an angle of incidence.

  2. Note that the definition of \(k_\theta\) depends on the—arbitrary—definition of the bend radius R (Hiremath et al. 2005).

  3. Note that it depends on the (arbitrary) definition of the bend radius, whether, for large R, the curve \({\mathfrak {R}}\,k_\theta /k_0\) approaches the level \(N_{\mathrm{eff}}\) from above, or from below (Hiremath et al. 2005).

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC (1964)

    MATH  Google Scholar 

  • Birks, T.A., Knight, J.C., Dimmick, T.E.: High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photon. Technol. Lett. 12(2), 182–183 (2000)

    Article  ADS  Google Scholar 

  • Chin, M.K., Chu, D.Y., Ho, S.-T.: Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes. J. Appl. Phys. 75(7), 3302–3307 (1994)

    Article  ADS  Google Scholar 

  • Hammer, M.: Oblique incidence of semi-guided waves on rectangular slab waveguide discontinuities: a vectorial QUEP solver. Opt. Commun. 338, 447–456 (2015)

    Article  ADS  Google Scholar 

  • Hammer, M.: OMS—1-D mode solver for dielectric multilayer slab waveguides (2016). http://www.computational-photonics.eu/oms.html

  • Hammer, M., Hildebrandt, A., Förstner, J.: How planar optical waves can be made to climb dielectric steps. Opt. Lett. 40(16), 3711–3714 (2015)

    Article  ADS  Google Scholar 

  • Hammer, M., Hildebrandt, A., Förstner, J.: Full resonant transmission of semi-guided planar waves through slab waveguide steps at oblique incidence. J. Lightwave Technol. 34(3), 997–1005 (2016)

    Article  ADS  Google Scholar 

  • Hiremath, K.R., Hammer, M., Stoffer, R., Prkna, L., Čtyroký, J.: Analytical approach to dielectric optical bent slab waveguides. Opt. Quantum Electron. 37(1–3), 37–61 (2005)

    Article  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  • Lock, J.A.: Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused gaussian beam. J. Opt. Soc. Am. A 14(3), 653–661 (1997)

    Article  ADS  Google Scholar 

  • Maple 2016 technical computing software. https://www.maplesoft.com/products/maple/

  • Okamoto, K.: Fundamentals of Optical Waveguides. Academic Press, SanDiego (2000)

    Google Scholar 

  • Poon, A.W., Chang, R.K., Lock, J.A.: Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination. Opt. Lett. 23(14), 1105–1107 (1998)

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Schwefel, H.G.L., Stone, A.D., Tureci, H.E.: Polarization properties and dispersion relations for spiral resonances of a dielectric rod. J. Opt. Soc. Am. B 22(11), 2295–2307 (2005)

    Article  ADS  Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)

    Google Scholar 

  • Tien, P.K.: Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 49(2), 361–419 (1977)

    Article  ADS  Google Scholar 

  • Ulrich, R., Martin, R.J.: Geometrical optics in thin film light guides. Appl. Opt. 10(9), 2077–2085 (1971)

    Article  ADS  Google Scholar 

  • Vassallo, C.: Optical Waveguide Concepts. Elsevier, Amsterdam (1991)

    Google Scholar 

Download references

Acknowledgements

Financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft DFG, Projects HA 7314/1-1, GRK 1464, and TRR 142) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Hammer.

Appendix: Continuity of spiral mode profiles

Appendix: Continuity of spiral mode profiles

We refer to the bend configuration as introduced in Fig. 1, and the formalism of Sects. 2.12.1.2. Principal field components \(E_y\) and \(H_y\) are defined piecewise for the regions \(r<R-d\), \(R-d< r< R\), and \(R< r\) in the form of Eq. (8), with separate coefficients \(A_E\), \(B_E\), \(C_E\), \(D_E\), and \(A_H\), \(B_H\), \(C_H\), \(D_H\), respectively. Equations. (5) relate the principal fields to the remaining electromagnetic components \(E_\theta\), \(H_\theta\), \(E_r\), and \(H_r\).

Requiring the principal components \(E_y\) and \(H_y\), and the angular components \(E_\theta\) and \(H_\theta\), to be continuous at \(r= R^- = R-d\) leads to the equations

$$\begin{aligned}&A_E{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{s}})= B_E{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{f}})+C_E{\mathrm {Y}}_{\nu }(R^{-}\chi _{\mathrm{f}}), \end{aligned}$$
(14)
$$\begin{aligned}&A_H{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{s}})=B_H{\mathrm {J}}_{\nu }(R^{-} \chi _{\mathrm{f}})+C_H{\mathrm {Y}}_{\nu }(R^{-}\chi _{\mathrm{f}}), \end{aligned}$$
(15)
$$\dfrac{1}{\chi _{\mathrm{s}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R^{-}}A_E{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{s}})-\omega \mu _{0}\chi _{\mathrm{s}} A_H{\mathrm {J'}}_{\nu }(R^{-}\chi _{\mathrm{s}})\right) = \dfrac{1}{\chi _{\mathrm{f}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R^{-}}\left( B_E{\mathrm {J_{\nu }}}(R^{-}\chi _{\mathrm{f}}) +C_E{\mathrm {Y}}_{\nu }(R^{-}\chi _{\mathrm{f}})\right) -\omega \mu _{0}\chi _{\mathrm{f}}\left( B_H{\mathrm {J'}}_{\nu }(R^{-}\chi _{\mathrm{f}}) +C_H{\mathrm {Y'}}_{\nu }(R^{-}\chi _{\mathrm{f}})\right) \right) ,$$
(16)
$$\begin{aligned}&\dfrac{1}{\chi _{\mathrm{s}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R^{-}}A_H{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{s}}) +\omega \epsilon _{0}n_{\mathrm{s}}^2\chi _{\mathrm{s}} A_E{\mathrm {J'}}_{\nu }(R^{-}\chi _{\mathrm{s}})\right) \nonumber \\&\quad = \dfrac{1}{\chi _{\mathrm{f}}^2}\left(-{\mathrm {i}}\dfrac{k_{y}\nu }{R^{-}}\left( B_H{\mathrm {J}}_{\nu }(R^{-}\chi _{\mathrm{f}}) +C_H{\mathrm {Y}}_{\nu }(R^{-}\chi _{\mathrm{f}})\right) +\omega \epsilon _{0}n_{\mathrm{f}}^2\chi _f \left( B_E{\mathrm {J'}}_{\nu }(R^{-} \chi _{\mathrm{f}})+C_E{\mathrm {Y'}}_{\nu }(R^{-}\chi _{\mathrm{f}})\right) \right). \end{aligned}$$
(17)

Likewise, these four fields are continuous at the outer interface at \(r=R\), if the equations

$$\begin{aligned}&B_E{\mathrm {J}}_{\nu }(R\chi _{\mathrm{f}})+C_E{\mathrm {Y}}_{\nu }(R\chi _{\mathrm{f}})=D_E{\mathrm {H}}_{\nu }^{(2)}(\pm R\chi _{\mathrm{c}}), \end{aligned}$$
(18)
$$\begin{aligned}&B_H{\mathrm {J}}_{\nu }(R\chi _{\mathrm{f}})+C_H{\mathrm {Y}}_{\nu }(R\chi _{\mathrm{f}})=D_H{\mathrm {H}}_{\nu }^{(2)}(\pm R\chi _{\mathrm{c}}), \end{aligned}$$
(19)
$$\begin{aligned}&\dfrac{1}{\chi _{\mathrm{f}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R}\left( B_E{\mathrm {J}}_{\nu }(R\chi _{\mathrm{f}}) +C_E{\mathrm {Y}}_{\nu }(R\chi _{\mathrm{f}})\right) -\omega \mu _{0}\chi _{\mathrm{f}}\left( B_H{\mathrm {J'}}_{\nu }(R\chi _{\mathrm{f}})+C_H{\mathrm {Y'}}_{\nu }(R\chi _{\mathrm{f}})\right) \right) \nonumber \\&\quad = \dfrac{1}{\chi _{\mathrm{c}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R}D_E{\mathrm {H}}^{(2)}_{\nu }(\pm R\chi _{\mathrm{c}}){\mp }\omega \mu _{0}\chi _{\mathrm{c}}D_H{\mathrm {H}}_{\nu }^{(2)'}(\pm R\chi _{\mathrm{c}})\right) , \end{aligned}$$
(20)
$$\begin{aligned}&\dfrac{1}{\chi _{\mathrm{f}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R}\left( B_H{\mathrm {J}}_{\nu }(R\chi _{\mathrm{f}})+C_H{\mathrm {Y}}_{\nu }(R\chi _{\mathrm{f}})\right) +\omega \epsilon _{0}n_{\mathrm{f}}^2\chi _{\mathrm{f}}\left( B_E{\mathrm {J'}}_{\nu }(R\chi _{\mathrm{f}})+C_E{\mathrm {Y'}}_{\nu }(R\chi _{\mathrm{f}})\right) \right) \nonumber \\&\quad = \dfrac{1}{\chi _{\mathrm{c}}^2}\left( -{\mathrm {i}}\dfrac{k_{y}\nu }{R}D_H{\mathrm {H}}^{(2)}_{\nu }(\pm R\chi _{\mathrm{c}})\pm \omega \epsilon _{0}n_{\mathrm{c}}^2\chi _{\mathrm{c}}D_E{\mathrm {H}}^{(2)'}_{\nu }(\pm R\chi _{\mathrm{c}})\right) \end{aligned}$$
(21)

are satisfied. Here abbreviations \(\chi _r=\sqrt{k_0^2n_r^2-k_y^2}\), for \(r \in \{{\mathrm {s}},{\mathrm {f}},{\mathrm {c}}\}\), have been introduced. Signs ± and \({\mp }\) distinguish wavenumber parameters \(k_y\,\lessgtr\,k_0n_{\mathrm{c}}\). Just as in the discussion of Eq. (8), the √-symbol is meant to indicate the positive real root, for a positive radicand, or the imaginary root with positive imaginary part, in case of a negative radicand. Eqs. (14)–(21) imply continuity of \(H_r\) and of \(n^2 E_r\) at the radial positions of both interfaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebers, L., Hammer, M. & Förstner, J. Spiral modes supported by circular dielectric tubes and tube segments. Opt Quant Electron 49, 176 (2017). https://doi.org/10.1007/s11082-017-1011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1011-x

Keywords

Navigation