Skip to main content
Log in

On the competition of two conflicting messages

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

There are plenty of conflicting messages in online social networks. This paper addresses the competition of two conflicting messages. Based on a novel individual-level competing spreading model (the generic UABU model), three criteria for one or two messages to terminate are presented. These criteria manifest the influence of the two message-spreading networks on the evolution of the two messages. Extensive computer simulations show that when a message terminates, the dynamics of a simplified UABU model (the linear UABU model) fits well with the expected evolutionary process of the message. These findings help in understanding the competing spreading process of two conflicting messages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of 2nd ACM Workshop on Online Social Networks (WOSN’09), pp. 37–42 (2009)

  2. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proccedings of 19th International Conference on World Wide Web (WWW’10), pp. 591–600 (2010)

  3. Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread fast in social networks. Commun. ACM 55(6), 70–75 (2012)

    Article  MATH  Google Scholar 

  4. Thomas, S.A.: Lies, damn lies, and rumors: an analysis of collective efficacy, rumors, and fear in the wake of Katrina. Sociol. Spectr. 27, 679–703 (2007)

    Article  Google Scholar 

  5. Peter, F.: ’bogus’ AP tweet about explosion at the White House wipes billions off US markets. The Telegr., Finance Mark. Wash. April (2013). http://www.telegraph.co.uk/finance/markets/10013768/Bogus-AP-tweet-about-explosion-at-the-White-House-wipes-billions-off-US-markets.html

  6. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of 20th International Conference on World Wide Web (WWW’11), pp. 665–674 (2011)

  7. Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)

    Article  Google Scholar 

  8. Karrer, B., Newman, M.E.J.: Competing epidemics on complex networks. Phys. Rev. E 84, 036106 (2011)

    Article  Google Scholar 

  9. Beutel, A., Prakash, B.A., Rosenfeld, R., Faloutsos, C.: Interacting viruses in networks: can both survive. In: Proceedings of 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2012)

  10. Santos, A., Moura, J.M.F., Xavier, J.M.F.: Bi-virus SIS epidemics over networks: qualitative analysis. IEEE Trans. Netw. Sci. Eng. 2(1), 17–29 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wang, Y., Xiao, G., Liu, J.: Dynamics of competing ideas in complex social networks. New J. Phys. 14(1), 013015 (2012)

    Article  Google Scholar 

  12. Prakash, B.A., Beutel, A., Rosenfeld, R., Faloutsos, C.: Winner takes all: competing viruses or ideas on fair-play networks. In: Proceedings of 2012 International World Wide Web Conference (WWW’12), pp. 1037–1046 (2012)

  13. Burghardt, K., Rand, W., Girvan, M.: Competing opinions and stubbornness: connecting models to data. Phys. Rev. E 93, 032305 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zan, Y., Wu, J., Li, P., Yu, Q.: SICR rumor spreading model in complex networks: counterattack and self-resistance. Phys. A 405, 159–170 (2014)

    Article  MathSciNet  Google Scholar 

  15. Afassinou, K.: Analysis of the impact of education rate on the rumor spreading mechanism. Phys. A 414, 43–52 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wen, S., Jiang, J., Xiang, Y., Yu, S., Zhou, W., Jia, W.: To shut them up or to clarify: restraining the spread of rumors in online social networks. IEEE Trans. Parallel Distrib. Syst. 25(12), 3306–3316 (2014)

    Article  Google Scholar 

  17. Wen, S., Haghighi, M.S., Chen, C., Xiang, Y., Zhou, W., Jia, W.: A sword with two edges: propagation studies on both positive and negative information in online social networks. IEEE Trans. Comput. 64(3), 640–653 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, L., Wang, J., Huang, R.: Immunization against the spread of rumors in homogenous networks. PLoS ONE 10(5), e0124978 (2015)

    Article  Google Scholar 

  19. Huo, L.A., Song, N.: Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency. Phys. A 461, 73–84 (2016)

    Article  MathSciNet  Google Scholar 

  20. He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., Li, Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2017)

    Article  Google Scholar 

  21. Sahneh, F.D., Chowdhury, F.N., Scoglio, C.M.: On the existence of a threshold for preventive bahavioral responses to suppress epidemic spreading. Sci. Rep. 2, 623 (2012)

    Article  Google Scholar 

  22. Wang, W., Liu, Q.-H., Cai, S.-M., Tang, M., Braunstein, L.A., Stanley, H.E.: Suppressing disease spreading by using information diffusion on multiplex networks. Sci. Rep. 6, 29259 (2016)

    Article  Google Scholar 

  23. Toyoizumi, K.: Predators: good will mobile codes combat against computer viruses. In: Proceedings of New Security Paradigms Workshop (NSPW’02), pp. 11–17 (2002)

  24. Castaneda, F., Sezer, E.C., Xu, J.: Worm vs. worm: preliminary study of an active counter-attack mechanism. In: Proceedings of ACM 2004 Workshop on Rapid Malcode (WORM’04), pp. 83–93 (2004)

  25. Zhu, Q., Yang, X., Yang, L.X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73(3), 1433–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, L.X., Yang, X.: Pulse treatment of computer viruses: a modeling study. Nonlinear Dyn. 76(2), 1379–1393 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, L.X., Yang, X.: The effect of infected external computers on the spread of viruses: a compartment modeling study. Phys. A 392(24), 6523–6535 (2013)

    Article  MathSciNet  Google Scholar 

  28. Yang, L.X., Yang, X.: A novel virus-patch mixed spreading model. PLoS ONE 10(9), e0137858 (2015)

    Article  Google Scholar 

  29. Xu, S.: Cybersecurity dynamics. In: Proceedings of the 2014 Symposium and Bootcamp on the Science of Security (HotSoS’14) (2014)

  30. Van Mieghem, P., Omic, J.S., Kooij, R.E.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  31. Van Mieghem, P.: The N-Intertwined SIS epidemic network model. Computing 93(2), 147–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sahneh, F.D., Scoglio, C., Van Mieghem, P.: Generalized epidemic mean-field model for spreading processes over multi-layer complex networks. IEEE/ACM Trans. Netw. 21(5), 1609–1620 (2013)

    Article  Google Scholar 

  33. Yang, L.X., Yang, X., Tang, Y.Y.: A bi-virus competing spreading model with generic infection rates. IEEE Trans. Netw. Sci. Eng. https://doi.org/10.1109/TNSE.2017.2734075

  34. Xu, S., Lu, W., Zhan, Z.: A stochastic model of multivirus dynamics. IEEE Trans. Dependable Secure Comput. 9(1), 30–45 (2012)

    Article  Google Scholar 

  35. Xu, S., Lu, W., Xu, L.: Push-and pull-based epidemic spreading in networks: thresholds and deeper insights. ACM Trans. Auton. Adapt. Syst. 7(3), 32 (2012)

    Article  Google Scholar 

  36. Xu, S., Lu, W., Xu, L., Zhan, Z.: Adaptive epidemic dynamics in networks: thresholds and control. ACM Trans. Auton. Adapt. Syst. 8(4), 19 (2014)

    Article  Google Scholar 

  37. Yang, L.X., Draief, M., Yang, X.: The impact of the network topology on the viral prevalence: a node-based approach. PLoS ONE 10(7), e0134507 (2015)

    Article  Google Scholar 

  38. Yang, L.X., Draief, M., Yang, X.: Heterogeneous virus propagation in networks: a theoretical study. Math. Methods Appl. Sci. 40(5), 1396–1413 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, L.X., Yang, X., Wu, Y.: The impact of patch forwarding on the prevalence of computer virus. Appl. Math. Model. 43, 110–125 (2017)

    Article  MathSciNet  Google Scholar 

  40. Xu, S., Lu, W., Li, H.: A stochastic model of active cyber defense dynamics. Internet Math. 11, 28–75 (2015)

    MathSciNet  Google Scholar 

  41. Zheng, R., Lu, W., Xu, S.: Active cyber defense dynamics exhibiting rich phenomena. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security (HotSoS’15), (2015)

  42. Zhao, L., Wang, Q., Cheng, J., Chen, Y., Wang, J., Huang, W.: Rumor spreading model with consideration of forgetting mechanism. Phys. A 390, 2619–2625 (2011)

    Article  Google Scholar 

  43. Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., Cui, H.: SIHR rumor spreading model in social networks. Phys. A 391, 2444–2453 (2012)

    Article  Google Scholar 

  44. Zhao, L., Qiu, X., Wang, X., Wang, J.: Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks. Phys. A 392, 987–994 (2013)

    Article  MathSciNet  Google Scholar 

  45. Xia, L.L., Jiang, G.P., Song, B., Song, Y.R.: Rumor spreading model considering hesitating mechanism in complex social networks. Phys. A 437, 295–303 (2015)

    Article  MathSciNet  Google Scholar 

  46. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  47. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  48. Varga, R.: Matrix Iterative Analysis. Springer, New York (2000)

    Book  MATH  Google Scholar 

  49. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  50. Narendra, K.S., Shorten, R.: Hurwitz stability of Metzler matrices. IEEE Trans. Autom. Control 55(6), 1484–1487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Khanafer, T. Basar, B. Gharesifard, Stability of epidemic models over directed graphs: a positive systems approach. arXiv:1407.6076v1

  52. Khalil, H.K.: Nonlinear Systems, 3rd edn. Pearson Education Inc, London (2002)

    MATH  Google Scholar 

  53. Szarski, J.: Differential Inequalities. Polish Scientific Publishers, Warszawa (1965)

    MATH  Google Scholar 

  54. Strauss, A., Yorke, J.A.: On asymptotically autonomous differential equations. Theory Comput. Syst. 1(2), 175–182 (1967)

    MathSciNet  MATH  Google Scholar 

  55. Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University, Cambridge (2001)

    Book  MATH  Google Scholar 

  56. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  57. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of email networks. Phys. Rev. E 66, 035103 (2002)

    Article  Google Scholar 

  59. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  60. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  61. Yang, L.X., Draief, M., Yang, X.: The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Phys. A 450, 403–415 (2016)

    Article  MathSciNet  Google Scholar 

  62. Zhang, T., Yang, L.X., Yang, X., Wu, Y., Tang, Y.Y.: Dynamic malware containment under an epidemic model with alert. Phys. A 470, 249–260 (2017)

    Article  MathSciNet  Google Scholar 

  63. Bi, J., Yang, X., Wu, Y., Xiong, Q., Wen, J., Tang, Y.Y.: On the optimal dynamic control strategy of disruptive computer virus. Discret. Dyn. Nat. Soc. 2017, 8390784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ma, J., Hu, B., Wang, C., Jin, W.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73(1–2), 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  65. Ma, J., Liu, Q., Ying, H., Wu, Y.: Emergence of spiral wave induced by defects block. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1665–1675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Qin, H., Ma, J., Wang, C., Wu, Y.: Autapse-induced spiral wave in network of neurons under noise. PLoS ONE 9(6), e100849 (2014)

    Article  Google Scholar 

  67. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84(2), 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  68. Song, X., Wang, C., Ma, J., Ren, G.: Collapse of ordered spatial pattern in neuronal network. Phys. A 451(1), 95–112 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere gratitude to the two anonymous reviewers and the editor for their valuable comments and constructive suggestions. This work is supported by Natural Science Foundation of China (Grant Nos. 61572006, 61379158), National Sci-Tech Support Plan (Grant No. 2015BAF05B03), Natural Science Foundation of Chongqing (Grant No. cstc2013jcyjA40011) and Fundamental Research Funds for the Central Universities (Grant No. 106112014CDJZR008823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Yang.

Appendices

Appendix A: Proof of Lemma 1

Given a sufficiently small time interval \(\Delta t >0\), it follows from the total probability formula that

$$\begin{aligned} \begin{aligned}&A_i(t+\Delta t)\\&= \left( 1 - A_i(t) - B_i(t)\right) \Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=0\} \\&\quad +\, A_i(t) \Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=1\} \\&\quad +\, B_i(t) \Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=2\}, 1 \le i \le N. \end{aligned} \end{aligned}$$
(A.1)

By the conditional total probability formula and in view of the model (2), we get that

$$\begin{aligned}&\Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=0\}\nonumber \\&\quad = \sum _{\mathbf {x} \in \{0, 1, 2\}^N, x_i = 0} \Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=0, \nonumber \\&\quad \quad \mathbf {X}(t) = \mathbf {x}\} \cdot \Pr \{\mathbf {X}(t) = \mathbf {x} \mid X_{i}(t)=0\}\nonumber \\&\quad = \frac{\Delta t}{1 - A_i(t) - B_i(t)} \cdot \sum _{\mathbf {x} \in \{0, 1, 2\}^N, x_i = 0} \sum _{j = 1}^N \beta _{ij}^{UA} 1_{\{x_j=1\}}\nonumber \\&\quad \quad \cdot \Pr \{\mathbf {X}(t) = \mathbf {x}\} + o(\Delta t)\nonumber \\&\quad = \frac{\Delta t}{1 - A_i(t) - B_i(t)} \cdot \sum _{j = 1}^N \beta _{ij}^{UA} \sum _{\mathbf {x} \in \{0, 1, 2\}^N} 1_{\{x_i = 0, x_j=1\}}\nonumber \\&\quad \quad \cdot \Pr \{\mathbf {X}(t) = \mathbf {x}\} + o(\Delta t) \nonumber \\&\quad = \frac{\Delta t}{1 - A_i(t) - B_i(t)} \sum _{j = 1}^N \beta _{ij}^{UA} \Pr \{X_i(t) = 0,\nonumber \\&\quad \quad X_j(t) = 1\} + o(\Delta t), \quad 1 \le i \le N. \end{aligned}$$
(A.2)

Similarly, we can derive that

$$\begin{aligned}&\Pr \{X_{i}(t+\Delta t)=2 \mid X_{i}(t)=1\} \nonumber \\&\quad = \frac{\Delta t}{A_i(t)} \cdot \sum _{j = 1}^N \beta _{ij}^{AB} \Pr \{X_i(t) = 1, X_j(t) = 2\}\nonumber \\&\qquad +\, o(\Delta t), \quad 1 \le i \le N \end{aligned}$$
(A.3)

and that

$$\begin{aligned}&\Pr \{X_{i}(t+\Delta t) = 0 \mid X_{i}(t)=1\} = \delta _i^A \Delta t+o(\Delta t),\nonumber \\&\quad 1 \le i \le N. \end{aligned}$$
(A.4)

It follows that

$$\begin{aligned}&\Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=1\}\nonumber \\&\quad = 1-\frac{\Delta t}{A_i(t)} \cdot \sum _{j = 1}^N \beta _{ij}^{AB} \Pr \{X_i(t) = 1, X_j(t) = 2\} \nonumber \\&\qquad -\,\delta _i^A \Delta t + o(\Delta t), \quad 1 \le i \le N. \end{aligned}$$
(A.5)

Besides, we have

$$\begin{aligned}&\Pr \{X_{i}(t+\Delta t)=1 \mid X_{i}(t)=2\} \nonumber \\&\quad = \frac{\Delta t}{B_i(t)} \cdot \sum _{j = 1}^N \beta _{ij}^{BA} \Pr \{X_i(t) = 2, X_j(t) = 1\} \nonumber \\&\qquad +\, o(\Delta t), \quad 1 \le i \le N. \end{aligned}$$
(A.6)

Substituting these equations into Eq. (A.1), rearranging the terms, dividing both sides by \(\Delta t\) and letting \(\Delta t \rightarrow 0\), we get that

$$\begin{aligned} \frac{\text {d}A_i(t)}{\text {d}t}= & {} \sum _{j = 1}^N \beta _{ij}^{UA} \Pr \{X_i(t) = 0, X_j(t) = 1\}\nonumber \\&+\sum _{j = 1}^N \beta _{ij}^{BA} \Pr \{X_i(t) = 2, X_j(t) = 1\} \nonumber \\&- \sum _{j = 1}^N \beta _{ij}^{AB} \Pr \{X_i(t) = 1, X_j(t) = 2\} \nonumber \\&- \delta _i^A A_i(t), \quad 1 \le i \le N. \end{aligned}$$
(A.7)

The last N equations in Lemma 1 can be derived in an analogous way. The proof is complete.

Appendix B: Proof of Theorem 1

(a) Suppose the model (10) admits a A-dominant equilibrium \(\mathbf {E}=(A_1,\ldots ,A_N,0,\ldots , 0)^T\). Let \(\mathbf {A}=(A_1,\ldots ,A_N)^T\). We show that \(\mathbf {0}< \mathbf {A} < \mathbf {1}\). It follows from the model that

$$\begin{aligned} A_i=\frac{f_i^{UA}(\mathbf {A})}{\delta _i^A+f_i^{UA}(\mathbf {A})}< 1, \quad 1 \le i \le N. \end{aligned}$$
(B.1)

Hence, \(\mathbf {A} < \mathbf {1}\). On the contrary, suppose that some \(A_k = 0\). It follows from the model (10) that \(f_k^{UA}(\mathbf {A})=0\). As \(G_A\) is strongly connected, we get that some \(\beta _{kl}^{UA} >0\), implying that \(A_l = 0\). Repeating this argument, we finally get that \(\mathbf {A} = \mathbf {0}\), contradicting the assumption that \(\mathbf {E}\) is a A-dominant equilibrium. Hence, \(\mathbf {A} > \mathbf {0}\).

Define a continuous mapping \(\mathbf {H}=(H_1,\ldots ,H_N)^T\!: (0,1]^N \rightarrow (0,1]^N\) by

$$\begin{aligned} H_i(\mathbf {x})=\frac{f_i^{UA}(\mathbf {x})}{\delta _i^A+f_i^{UA}(\mathbf {x})}, \;\, \mathbf {x}=(x_1,\ldots ,x_N)^T{\in }(0,1]^N. \end{aligned}$$
(B.2)

It suffices to show that \(\mathbf {H}\) has a unique fixed point. Let \(\mathbf {B}(t) \equiv \mathbf {0}\) and rewrite the model (10) as

$$\begin{aligned} \frac{\text {d}\mathbf {A}(t)}{\text {d}t}=\mathbf {C}_A\mathbf {A}(t)+\mathbf {G}(\mathbf {A}(t)), \end{aligned}$$
(B.3)

where \(\mathbf {G}(\mathbf {A}(t))=o(\Vert \mathbf {A}(t)\Vert )\). By Lemma 3, \(\mathbf {C}_A\) has a positive eigenvector \(\mathbf {v}=(v_1,\ldots ,v_N)^T\) belonging to the eigenvalue \(s(\mathbf {C}_A)\). As \(s(\mathbf {C}_A) > 0\), we have \(\mathbf {C}_A\mathbf {v}=s(\mathbf {C}_A)\mathbf {v} > \mathbf {0}.\) Hence, there is a small \(\varepsilon > 0\) such that

$$\begin{aligned} \mathbf {C}_A \cdot (\varepsilon \mathbf {v})+\mathbf {G}(\varepsilon \mathbf {v})=\varepsilon s(\mathbf {C}_A)\mathbf {v}+\mathbf {G}(\varepsilon \mathbf {v})\ge \mathbf {0}, \end{aligned}$$
(B.4)

which is equivalent to \(\mathbf {H}(\varepsilon \mathbf {v})\ge \varepsilon \mathbf {v}\). On the other hand, it is easily verified that \(\mathbf {H}\) is monotonically increasing, i.e., \(\mathbf {u} \ge \mathbf {w}\) implies \(\mathbf {H}(\mathbf {u}) \ge \mathbf {H}(\mathbf {w})\). Define a compact convex set as \(K=\prod _{i=1}^N[\varepsilon v_i,1]\). Then, \(\mathbf {H}|_{K}\) maps K into K. It follows from Lemma 9 that \(\mathbf {H}\) has a fixed point in K. Denote this fixed point by \(\mathbf {A}^*=(A_1^*,\ldots ,A_N^*)^T\).

Suppose \(\mathbf {H}\) has a fixed point \(\mathbf {A}^{**}=(A_1^{**},\ldots ,A_N^{**})^T\) other than \( \mathbf {A}^{*}\). Let

$$\begin{aligned} \theta =\max _{1 \le i \le N}\frac{A_i^*}{A_i^{**}}, \quad i_0=\arg \max _{1 \le i \le N}\frac{A_i^*}{A_i^{**}}. \end{aligned}$$
(B.5)

Without loss of generality, assume \(\theta >1\). It follows that

$$\begin{aligned} \begin{aligned} A_{i_0}^{*}&= H_{i_0}(\mathbf {A}^*)\le H_{i_0}(\theta \mathbf {A}^{**}) \frac{f_{i_0}^{UA}(\theta \mathbf {A}^{**})}{\delta _{i_0}^A +f_{i_0}^{UA}(\theta \mathbf {A}^{**})}\\&\quad <\, \frac{f_{i_0}^{UA}(\theta \mathbf {A}^{**})}{\delta _{i_0}^A+f_{i_0}^{UA}(\mathbf {A}^{**})} \le \frac{\theta f_{i_0}^{UA}(\mathbf {A}^{**})}{\delta _{i_0}^A+f_{i_0}^{UA}(\mathbf {A}^{**})}\\&=\theta H_{i_0}(\mathbf {A}^{**})=\theta A_{i_0}^{**}, \end{aligned} \end{aligned}$$
(B.6)

where \(f_{i_0}^{UA}(\theta \mathbf {A}^{**}) \le \theta f_{i_0}^{UA} (\mathbf {A}^{**})\) follows from the concavity of \(f_{i_0}^{UA}\). This contradicts the assumption that \(A_{i_0}^{*}=\theta A_{i_0}^{**}\). Hence, \(\mathbf {A}^{*}\) is the unique fixed point of \(\mathbf {H}\). The proof is complete.

(b) The argument is analogous to that for Claim (a) and hence is omitted.

Appendix C: Proof of Theorem 2

Let \((\mathbf {A}(t)^T, \mathbf {B}(t)^T)^T\) be a solution to the model (10). It follows from the first N equations of the model (13), which is an equivalent form of the model (10), that

$$\begin{aligned} \frac{\text {d}\mathbf {A}(t)}{\text {d}t}\le (\mathbf {I}_N-diag\mathbf {A}(t)) \mathbf {f}_{UA} (\mathbf {A}(t))-\mathbf {D}_A \mathbf {A}(t). \end{aligned}$$
(C.1)

Consider the comparison system

$$\begin{aligned} \frac{\text {d}\mathbf {u}(t)}{\text {d}t}=(\mathbf {I}_N-diag\mathbf {u}(t))\mathbf {f}_{UA} (\mathbf {u}(t))-\mathbf {D}_A \mathbf {u}(t) \end{aligned}$$
(C.2)

with \(\mathbf {u}(0) = \mathbf {A}(0)\). This system admits the trivial equilibrium \(\mathbf {0}\). Moreover, it follows from Lemma 7 that \(\mathbf {u}(t) \ge \mathbf {A}(t) \ge \mathbf {0}\). We proceed by distinguishing two possibilities.

Case 1 \(s(\mathbf {C}_A)<0\). By Lemma 5, there is a positive definite diagonal matrix \(\mathbf {P}_1\) such that \(\mathbf {C}_A^T\mathbf {P}_1+\mathbf {P}_1\mathbf {C}_A\) is negative definite. Let \(\mathbf {u} = (u_1,\ldots ,u_N)^T\), and define a positive definite function as

$$\begin{aligned} V_1(\mathbf {u})=\mathbf {u}^T \mathbf {P}_1 \mathbf {u}. \end{aligned}$$
(C.3)

By calculations, we get that

$$\begin{aligned} \begin{aligned}&\frac{\text {d}V_1(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}= 2\mathbf {u}(t)^T \mathbf {P}_1 \frac{\text {d}\mathbf {u}(t)}{\text {d}t}\\&\quad \le 2\mathbf {u}(t)^T \mathbf {P}_1\left[ \mathbf {f}_{UA}(\mathbf {u}(t)) - \mathbf {D}_R\mathbf {u}(t) \right] \\&\quad \le 2\mathbf {u}(t)^T \mathbf {P}_1\mathbf {C}_A \mathbf {u}(t)\\&= \mathbf {u}(t)^T[\mathbf {C}_A^T\mathbf {P}_1+\mathbf {P}_1 \mathbf {C}_A]\mathbf {u}(t) \le 0. \end{aligned} \end{aligned}$$
(C.4)

Here, the second inequality follows from the concavity of \(\mathbf {f}_{UA}(\mathbf {x}) - \mathbf {D}_A\mathbf {x}\). Furthermore, \(\frac{\text {d}V_1(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}=0\) if and only if \(\mathbf {u}(t)=\mathbf {0}\). According to the LaSalle invariance principle (Corollary 4.1 in [52]), the trivial equilibrium \(\mathbf {0}\) of the system (C.2) is asymptotically stable for \([0,1]^N\).

Case 2: \(s(\mathbf {C}_A)=0\). By Lemma 6, there is a positive definite diagonal matrix \(\mathbf {P}_2\) such that \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) is negative semi-definite. Define a positive definite function as

$$\begin{aligned} V_2(\mathbf {u})=\mathbf {u}^T \mathbf {P}_2 \mathbf {u}. \end{aligned}$$
(C.5)

Similarly, we have

$$\begin{aligned} \frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)} \le \mathbf {u}(t)^T[\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A]\mathbf {u}(t) \le 0. \end{aligned}$$
(C.6)

If \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) is negative definite, the subsequent argument is analogous to that for Case 1. Now, assume \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) is not negative definite, which implies

$$\begin{aligned} s(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A)=0. \end{aligned}$$
(C.7)

As \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) is Metzler and irreducible, it follows from Lemma 3 that (a) 0 is a simple eigenvalue of \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\), and (b) up to scalar multiple, \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) has a positive eigenvector belonging to eigenvalue 0. Obviously, \(\frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}=0\) if \(\mathbf {u}(t)=\mathbf {0}\). On the contrary, suppose \(\frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}=0\) for some \(\mathbf {u}(t)\ge \mathbf {0}\). If \(\mathbf {u}(t) > \mathbf {0}\), then \(\mathbf {f}_{UA}(\mathbf {u}(t))>\mathbf {0}\), implying \(\frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}<0\), a contradiction. If \(\mathbf {u}(t)\) has a zero component, then \(\mathbf {u}(t)\) is not an eigenvector of \(\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A\) belonging to eigenvalue 0. It follows from the Rayleigh formula (Theorem 4.2.2 in [47]) that

$$\begin{aligned} \mathbf {u}(t)^T[\mathbf {C}_A^T\mathbf {P}_2+\mathbf {P}_2\mathbf {C}_A]\mathbf {u}(t)<0, \end{aligned}$$
(C.8)

implying \(\frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}<0\), again a contradiction. Hence, \(\mathbf {u}(t)=\mathbf {0}\) if \(\frac{\text {d}V_2(\mathbf {u}(t))}{\text {d}t}\mid _{(C.2)}=0\). It follows from the LaSalle invariance principle that the trivial equilibrium \(\mathbf {0}\) of the system (C.2) is asymptotically stable with respect to \([0,1]^N\).

Combining Cases 1 and 2, we get \(\mathbf {u}(t) \rightarrow \mathbf {0}\) as \(t \rightarrow \infty \). According to Lemma 7, we get \(\mathbf {A}(t)\le \mathbf {u}(t)\), which implies \(\mathbf {R}(t) \rightarrow \mathbf {0}\) as \(t \rightarrow \infty \).

Similarly, we can derive that \(\mathbf {B}(t) \rightarrow \mathbf {0}\) as \(t \rightarrow \infty \). The proof is complete.

Appendix D: Proof of Corollary 1

  1. (a)

    We first show \(s(\mathbf {C}_A) < 0\). As \(\mathbf {C}_A\mathbf {D}_A^{-1}\) is Metzler and irreducible, and it follows from Lemma 3 that \(\mathbf {C}_A\mathbf {D}_A^{-1}\) has a positive eigenvector \(\mathbf {x}\) belonging to eigenvalue \(s(\mathbf {C}_A\mathbf {D}_A^{-1})\). So,

    $$\begin{aligned} \left( \mathbf {C}_A\mathbf {D}_A^{-1}+\mathbf {I}_N\right) \mathbf {x}= \left[ s(\mathbf {C}_A\mathbf {D}_A^{-1})+1\right] \mathbf {x}. \end{aligned}$$
    (D.1)

    That is, \(\mathbf {x}\) is an eigenvector of \(\mathbf {C}_A\mathbf {D}_A^{-1}+\mathbf {I}_N\) belonging to eigenvalue \(s(\mathbf {C}_A\mathbf {D}_A^{-1})+1\). It follows from Lemma 2 that

    $$\begin{aligned} s(\mathbf {C}_A\mathbf {D}_A^{-1}) = \rho (\mathbf {C}_A\mathbf {D}_A^{-1}+\mathbf {I}_N)-1 < 0. \end{aligned}$$
    (D.2)

    By Lemma 5, there is a positive definite diagonal matrix \(\mathbf {D}\) such that the matrix

    $$\begin{aligned} \mathbf {P}=(\mathbf {C}_A \mathbf {D}_A^{-1})^T\mathbf {D}+\mathbf {D}(\mathbf {C}_A\mathbf {D}_A^{-1}) \end{aligned}$$
    (D.3)

    is negative definite. Direct calculations give

    $$\begin{aligned} \left[ \mathbf {D}_A^{\frac{1}{2}}\mathbf {C}_A\mathbf {D}_A^{-\frac{1}{2}}\right] ^T \mathbf {D}+\mathbf {D}\left[ \mathbf {D}_A^{\frac{1}{2}}\mathbf {C}_A \mathbf {D}_A^{-\frac{1}{2}}\right] =\mathbf {D}_A^{\frac{1}{2}}\mathbf {P}\mathbf {D}_A^{\frac{1}{2}}. \end{aligned}$$
    (D.4)

    As \(\mathbf {D}_A^{\frac{1}{2}}\mathbf {P}\mathbf {D}_A^{\frac{1}{2}}\) is negative definite, \(\mathbf {D}_A^{\frac{1}{2}}\mathbf {C}_A\mathbf {D}_A^{-\frac{1}{2}}\) is diagonally stable and hence Hurwitz. It follows that

    $$\begin{aligned} s(\mathbf {C}_A) = s(\mathbf {D}_A^{\frac{1}{2}}\mathbf {C}_A\mathbf {D}_A^{-\frac{1}{2}}) < 0. \end{aligned}$$
    (D.5)

    Similarly, we have \(s(\mathbf {C}_B) < 0\). The declared result follows from Theorem 2.

  2. (b)

    By the concavity of \(f_i^{UA}(\mathbf {x})\), we have \(\frac{\partial f_i^{UA}(\mathbf {0})}{\partial x_j}\le \beta _{ij}^{UA}\). That is, \(\mathbf {C}_A + \mathbf {D}_A \le \mathbf {M}_{UA}\). Hence,

    $$\begin{aligned} \rho (\mathbf {C}_A\mathbf {D}_A^{-1}+\mathbf {I}_N) \le \rho (\mathbf {M}_{UA}\mathbf {D}_A^{-1}) < 1. \end{aligned}$$
    (D.6)

    Similarly, we have \(\rho (\mathbf {C}_B\mathbf {D}_B^{-1}+\mathbf {I}_N) < 1\). The claim follows from Claim (a) of this corollary.

  3. (c)

    The claim follows from Claim (b) of this corollary and the well-known inequality \(\rho (\mathbf {M}) \le ||\mathbf {M}||_1\).

  4. (d)

    The claim follows from Claim (b) of this corollary and the well-known inequality \(\rho (\mathbf {M}) \le ||\mathbf {M}||_{\infty }\).

Appendix E: Proof of Theorem 3

Let \((\mathbf {A}(t)^T, \mathbf {B}(t)^T)^T\) be a solution to the model (10) with \(\mathbf {A}(0)\ne \mathbf {0}\). It follows from the last N equations of the model (9) that

$$\begin{aligned} \frac{\text {d}\mathbf {B}(t)}{\text {d}t}\le (\mathbf {I}_N-diag(\mathbf {B}(t)))\mathbf {f}_{UB} (\mathbf {B}(t))-\mathbf {D}_B\mathbf {B}(t). \end{aligned}$$
(E.1)

By an argument analogous to that for Theorem 2, we get \(\mathbf {B}(t)\rightarrow \mathbf {0}\). Consider the following limit system of model (5).

$$\begin{aligned} \frac{\text {d}\mathbf {u}(t)}{\text {d}t}=(\mathbf {I}_N-diag\mathbf {u}(t))\mathbf {f}_{UA} (\mathbf {u}(t))-\mathbf {D}_A \mathbf {u}(t) \end{aligned}$$
(E.2)

with \(\mathbf {u}(0) = \mathbf {A}(0)\). Theorem 1 confirms that the system admits a unique nonzero equilibrium \(\mathbf {A}^*=(A_1^*,\ldots ,A_N^*)\). By Lemma 8, it suffices to show that \(\mathbf {A}^*\) is asymptotically stable for \((0,1]^N\). Given a solution \(\mathbf {u}(t) = (u_1(t), \ldots , u_N(t))^T\) to the system (E.2) with \(\mathbf {u}(0) > \mathbf {0}\). First, let us show the following claim.

Claim 1

\(\mathbf {u}(t) > \mathbf {0}\) for all \(t > 0\).

Proof of Claim 1

On the contrary, suppose there is \(t_0 > 0\) such that (a) \(\mathbf {u}(t) > \mathbf {0}\), \(0< t < t_0\), and (b) \(u_i(t_0)=0\) for some i. According to the smoothness of \(\mathbf {u}(t)\), we get \(\frac{du_{i}(t_0)}{\text {d}t}=0\), implying that \(f_{i}^{UA}(\mathbf {u}(t_0))=0\). As \(G_A\) is strongly connected, there is j such that \(\beta _{ij}^{UA}>0\), which implies \(u_{j}(t_0)=0\). Working inductively, we conclude that \(\mathbf {u}(t_0)=0\). This contradicts the uniqueness of the solution to the system (E.2) with given initial condition. Claim 1 is proven. \(\square \)

For \(t > 0\), let

$$\begin{aligned} Z(\mathbf {u}(t))=\max _{1 \le k \le N} \frac{u_k(t)}{A_k^*}, \quad z(\mathbf {u}(t))=\min _{1 \le k \le N} \frac{u_k(t)}{A_k^*}. \end{aligned}$$
(E.3)

Define a function \(V_3\) as

$$\begin{aligned} V_3(\mathbf {u}(t))=\max \{Z(\mathbf {u}(t))-1,0\}+\max \{1-z(\mathbf {u}(t)),0\}. \end{aligned}$$
(E.4)

It is easily verified that \(V_3\) is positive definite with respect to \(\mathbf {A}^*\), i.e., (a) \(V_3(\mathbf {u}(t))\ge 0\), and (b) \(V_3(\mathbf {u}(t))=0\) if and only if \(\mathbf {u}(t)=\mathbf {A}^{*}\). Next, let us show that \(D^+V_3(\mathbf {u}(t)) \le 0\), where \(D^+\) stands for the upper right Dini derivative. To this end, we need to show the following two claims for \(t > 0\).

Claim 2

\(D^+Z(\mathbf {u}(t))\le 0\) if \(Z(\mathbf {u}(t))\ge 1\). Moreover, \(D^+Z(\mathbf {u}(t))<0\) if \(Z(\mathbf {u}(t))>1\).

Claim 3

\(D_+z(\mathbf {u}(t))\ge 0\) if \(z(\mathbf {u}(t))\le 1\). Moreover, \(D_+z(\mathbf {u}(t))> 0\) if \(z(\mathbf {u}(t))<1\). Here, \(D_+\) stands for the lower right Dini derivative.

Proof of Claim 2

Choose \(k_0\) such that

$$\begin{aligned} Z(\mathbf {u}(t))=\frac{u_{k_0}(t)}{A_{k_0}^*}, \quad D^+Z(\mathbf {u}(t))=\frac{u_{k_0}^{'}(t)}{A_{k_0}^*}. \end{aligned}$$
(E.5)

Then,

$$\begin{aligned} \frac{A_{k_0}^{*}}{u_{k_0}(t)}u_{k_0}^{'}(t) {=}\left( 1-u_{k_0}(t)\right) \frac{A_{k_0}^{*}}{u_{k_0}(t)}f_{k_0}^{UA}(\mathbf {u}(t))-\delta _{k_0}^A A_{k_0}^{*}. \end{aligned}$$
(E.6)

If \(f_{k_0}^{UA}(\mathbf {u}(t))=0\), then \(\frac{A_{k_0}^{*}}{u_{k_0}(t)}u_{k_0}^{'}(t) <0\), which implies \(D^+Z(\mathbf {u}(t))<0\). Now assume \(f_{k_0}^{UA}(\mathbf {u}(t))>0\), then

$$\begin{aligned} \begin{aligned} \frac{A_{k_0}^{*}}{u_{k_0}(t)}u_{k_0}^{'}(t)&\le (1-A_{k_0}^{*})\frac{A_{k_0}^{*}}{u_{k_0}(t)}f_{k_0}^{UA}(\mathbf {u}(t))-\delta _{k_0}^A A_{k_0}^{*}\\&\le (1-A_{k_0}^{*})f_{k_0}^{UA}\left( \frac{A_{k_0}^{*}}{u_{k_0}(t)}\mathbf {u}(t)\right) -\delta _{k_0}^A A_{k_0}^{*} \\&\le (1-A_{k_0}^{*})f_{k_0}^{UA}\left( \mathbf {A}^*\right) -\delta _{k_0}^A A_{k_0}^{*}=0, \end{aligned} \end{aligned}$$
(E.7)

where the second inequality follows from the concavity of \(f_{k_0}^{UA}\), and the third inequality follows from the monotonicity of \(f_{k_0}^{UA}\). This implies \(D^+Z(\mathbf {u}(t))\le 0\). Noting that the first inequality is strict if \(Z(\mathbf {u}(t))>1\), we get that \(D^+Z(\mathbf {u}(t))<0\) if \(Z(\mathbf {u}(t))>1\). Claim 2 is proven. \(\square \)

The argument for Claim 3 is analogous to that for Claim 2 and hence is omitted. Next, consider three possibilities.

  • Case 1: \(Z(\mathbf {u}(t)) < 1\). Then, \(z(\mathbf {u}(t)) < 1\) and \(V_3(\mathbf {u}(t)) = 1 - z(\mathbf {u}(t))\). Hence, \(D^+V_3(\mathbf {u}(t)) = -D_+z(\mathbf {u}(t)) < 0\).

  • Case 2: \(z(\mathbf {u}(t)) > 1\). Then, \(Z(\mathbf {u}(t)) > 1\) and \(V_3(\mathbf {u}(t)) = Z(\mathbf {u}(t)) - 1\). Hence, \(D^+V_3(\mathbf {u}(t)) = D^+Z(\mathbf {u}(t)) < 0\).

  • Case 3 If \(Z(\mathbf {u}(t)) \ge 1\), \(z(\mathbf {u}(t)) \le 1\). Then, \(V_3(\mathbf {u}(t)) = Z(\mathbf {u}(t)) - z(\mathbf {u}(t))\) and \(D^+V_3(\mathbf {u}(t)) = D^+Z(\mathbf {u}(t)) - D_+z(\mathbf {u}(t)) \le 0\). Moreover, the equality holds if and only if \(\mathbf {u}(t) = \mathbf {A}^*\).

The declared result follows from the LaSalle invariance principle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LX., Li, P., Yang, X. et al. On the competition of two conflicting messages. Nonlinear Dyn 91, 1853–1869 (2018). https://doi.org/10.1007/s11071-017-3986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3986-z

Keywords

Navigation