Skip to main content
Log in

The impact of nonlinear infection rate on the spread of computer virus

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dominating majority of previous computer virus epidemic models assume a bilinear infection rate. This assumption, however, ignores the fact that, due to reasons such as overcrowded infected nodes and active protection measures taken at a high level of viral prevalence, the infection rate typically rises in a nonlinear fashion. This paper is devoted to understanding the impact of nonlinear infection rate on the propagation of computer infections. For that purpose, a new computer virus epidemic model is proposed by introducing a generic nonlinear infection rate into a traditional SLBS model. Theoretical analysis shows that, under moderate conditions, the proposed model admits a (viral) globally asymptotically stable equilibrium, fully demonstrating the robustness of stability of the equilibrium to the details of infections. The new model is justified through simulation experiments. We also determine the influence of some model parameters on the viral equilibrium. Our results extend some previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley Education Publishers Inc., Reading (2005)

    Google Scholar 

  2. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35 (1987)

    Article  Google Scholar 

  3. Murray, W.H.: The application of epidemiology to computer viruses. Comput. Secur. 7(2), 130–150 (1988)

    Article  Google Scholar 

  4. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proc. 1991 IEEE Comput. Soc. Symp. Res. Secur. Privacy, pp. 343–359 (1991)

  5. Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence. In: Proc. 1993 IEEE Comput. Soc. Symp. Res. Secur. Privacy, pp. 2–15 (1993)

  6. Muroya, Y., Enatsu, Y., Li, H.: Global stability of a delayed SIRS computer virus propagation model. Int. J. Comput. Math. 91(3), 347–367 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhu, Q., Yang, X., Yang, L.-X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73(3), 1433–1441 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188(2), 1476–1482 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, L., Liao, X., Li, H., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56(7–8), 167–179 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, C., Zhao, Y., Wu, Y., Deng, S.: A stochastic dynamic model of computer viruses. Discrete Dyn. Nat. Soc. (2012). Article ID 264874

  12. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  13. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6) (2001). Article ID 066117

  14. Huang, C.-Y., Lee, C.-L., Wen, T.-H., Sun, C.-T.: A computer virus spreading model based on resource limitations and interaction costs. J. Syst. Softw. 86(3), 801–808 (2013)

    Article  Google Scholar 

  15. Yang, L.-X., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89(17), 2307–2314 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yang, L.-X., Yang, X.: The spread of computer viruses under the influence of removable storage devices. Appl. Math. Comput. 219(8), 3914–3922 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yang, M., Zhang, Z., Li, Q., Zhang, G.: An SLBRS model with vertical transmission of computer virus over Internet. Discrete Dyn. Nat. Soc. (2012). Article ID 693695

  18. Yang, L.-X., Yang, X., Zhu, Q., Wen, L.: A computer virus model with graded cure rates. Nonlinear Anal. RWA 14(1), 414–422 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, C., Liu, W., Xiao, J., Zhao, Y.: Hopf bifurcation of an improved SLBS model under the influence of latent period. Math. Probl. Eng. 2013 (2013). Article ID 196214

  20. Muroya, Y., Li, H., Kuniya, T.: On global stability of a nonresident computer virus model. Acta Math. Sci. 19(6), 1935–1944 (2014)

    Google Scholar 

  21. Yang, L.-X., Yang, X., Wen, L., Liu, J.: Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability, Discrete Dyn. Nat. Soc. (2012). Article ID 693695

  22. Yang, L.-X., Yang, X.: A new epidemic model of computer viruses. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1935–1944 (2014)

    Article  MathSciNet  Google Scholar 

  23. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin (1993)

  24. Levin, S.A., Hallam, T.G., Gross, L.J.: Applied Mathematical Ecology. Springer, New York (1989)

    Book  MATH  Google Scholar 

  25. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  26. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69(6), 1871–1886 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68(3), 615–626 (2006)

    Article  MathSciNet  Google Scholar 

  29. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23(2), 187–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hethcote, H.W., van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29(3), 271–287 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Derrick, W.R., van den Driessche, P.: Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete Contin. Dyn. Syst. B 2, 299–309 (2003)

    Article  Google Scholar 

  33. Hethcote, H.W., Levin, S.A.: Periodicity in epidemiological models, in Applied Mathematical Ecology (Trieste, 1986), Biomathematics 18. Springer, Berlin, pp. 193–211 (1989)

  34. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188(1), 135–163 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tang, Y., Huang, D., Ruan, S., Zhang, W.: Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate. SIAM J. Appl. Math. 69(2), 621–639 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Li, G., Wang, W.: Bifurcation analysis of an epidemic model with nonlinear incidence. Appl. Math. Comput. 214(2), 411–423 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yuan, H., Guan, L., Guan, C.: On modeling the crowding and psychological effects in network-virus prevalence with nonlinear epidemic model. Appl. Math. Comput. 219, 2387–2397 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate. Appl. Math. Comput. 222, 265–274 (2013)

    Article  MathSciNet  Google Scholar 

  40. Thieme, H.R.: Convergence results and a Poincare–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30(7), 755–763 (1992)

  41. Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. Prentice Hall, Englewood Cliffs (2004)

  42. http://anti-virus-software-review.toptenreviews.com/how-infected-are-we.html

  43. http://tech.163.com/14/0917/06/A6ASUBAU000915BF.html

  44. http://pcedu.pconline.com.cn/pingce/pingcesystem/1109/2527365_all.html

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for their valuable comments and suggestions that have greatly improved the quality of this paper. This work is supported by Natural Science Foundation of China (Grant No. 61379158), Science and Technology Support Program of China (Grant No. 2014BAH25F01), and Basic and Advanced Research Program of Chongqing (Grant No. cstc2014jcyjA40054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LX., Yang, X. The impact of nonlinear infection rate on the spread of computer virus. Nonlinear Dyn 82, 85–95 (2015). https://doi.org/10.1007/s11071-015-2140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2140-z

Keywords

Mathematics Subject Classification

Navigation