Skip to main content
Log in

A mixing propagation model of computer viruses and countermeasures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the CMC antivirus strategy proposed by Chen and Carley, a mixing propagation model of computer viruses and countermeasures is suggested. This model has two potential virus-free equilibria and two potential endemic equilibria. The existence and global stability of these equilibria are fully investigated. From the obtained results it can be deduced that the CMC strategy is efficacious in deracinating viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Reading (2005)

    Google Scholar 

  2. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35 (1987)

    Article  Google Scholar 

  3. Murray, W.H.: The application of epidemiology to computer viruses. Comput. Secur. 7(2), 130–150 (1988)

    Article  Google Scholar 

  4. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proceedings of 1991 IEEE Symposium Security and Privacy, pp. 343–359 (1991)

    Chapter  Google Scholar 

  5. Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence. In: Proceedings of 1993 IEEE Symposium on Security and Privacy, pp. 2–15 (1987)

    Google Scholar 

  6. Billings, L., Spears, W.M., Schwartz, I.B.: A unified prediction of computer virus spread in connected networks. Phys. Lett. A 297(3–4), 261–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mishra, B.K., Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Appl. Math. Comput. 190(2), 1207–1212 (2007)

    Article  MATH  Google Scholar 

  8. Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188(2), 1476–1482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yuan, H., Chen, G.: Network virus-epidemic model with the point-to-group information propagation. Appl. Math. Comput. 206(1), 357–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yuan, H., Chen, G., Wu, J., Xiong, H.: Towards controlling virus propagation in information systems with point-to-group information sharing. Decis. Support Syst. 48(1), 57–68 (2009)

    Article  Google Scholar 

  11. Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O.: Dynamic models for computer viruses. Comput. Secur. 27(7–8), 355–359 (2008)

    Article  Google Scholar 

  12. Piqueira, J.R.C., Araujo, V.O.: A modified epidemiological model for computer viruses. Appl. Math. Comput. 213(2), 355–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, X., Tan, Q.: Dynamical behavior of computer virus on Internet. Appl. Math. Comput. 217(6), 2520–2526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mishra, B.K., Saini, D.K.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34(3), 710–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Toutonji, O.A., Yoo, S.-M., Park, M.: Stability analysis of VEISV propagation modeling for network worm attack. Appl. Math. Model. 36(6), 2751–2761 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, L., Liao, X., Li, H., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56(7–8), 167–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, T., Liao, X., Li, H.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012, 841987 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Ren, J., Yang, X., Yang, L.-X., Xu, Y., Yang, F.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1), 74–79 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ren, J., Yang, X., Zhu, Q., Yang, L.X., Zhang, C.: A novel computer virus model and its dynamics. Nonlinear Anal.: Real World Appl. 13(1), 376–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ren, J., Xu, Y., Zhang, Y., Dong, Y., Hao, G.: Dynamics of a delay-varying computer virus propagation model. Discrete Dyn. Nat. Soc. 2012, 371792 (2012)

    MathSciNet  Google Scholar 

  22. Yang, M., Zhang, Z., Li, Q., Zhang, G.: An SLBRS model with vertical transmission of computer virus over the Internet. Discrete Dyn. Nat. Soc. 2012, 925648 (2012)

    MathSciNet  Google Scholar 

  23. Zhu, Q., Yang, X., Yang, L.-X., Zhang, C.: Optimal control of computer virus under a delayed model. Appl. Math. Comput. 218(23), 11613–11619 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhu, Q., Yang, X., Ren, J.: Modeling and analysis of the spread of computer virus. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5117–5124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, C., Zhao, Y., Wu, Y.: An impulse model for computer viruses. Discrete Dyn. Nat. Soc. 2012, 260962 (2012)

    MathSciNet  Google Scholar 

  26. Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: Propagation of computer virus under human intervention: a dynamical model. Discrete Dyn. Nat. Soc. 2012, 106950 (2012)

    Article  MathSciNet  Google Scholar 

  27. Yang, L.-X., Yang, X., Wen, L., Liu, J.: Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. Discrete Dyn. Nat. Soc. 2012, 693695 (2012)

    Google Scholar 

  28. Yang, L.-X., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89(17), 2307–2314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, L.-X., Yang, X., Zhu, Q., Wen, L.: A computer virus model with graded cure rates. Nonlinear Anal., Real World Appl. 4(1), 414–422 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Dezsö, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055103 (2002)

    Article  Google Scholar 

  31. Chen, L.C., Carley, K.M.: The impact of countermeasure propagation on the prevalence of computer viruses. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 823–833 (2004)

    Article  Google Scholar 

  32. Markus, L.: Asymptotically autonomous differential systems. In: Lefschetz, S. (ed.) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies, vol. 36, pp. 17–29. Princeton University Press, Princeton (1956)

    Google Scholar 

  33. Robinson, R.C.: An Introduction to Dynamical System: Continuous and Discrete. Prentice Hall, New York (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Doctorate Foundation of Educational Ministry of China (Grant No. 20110191110022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Yang, X., Yang, LX. et al. A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn 73, 1433–1441 (2013). https://doi.org/10.1007/s11071-013-0874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0874-z

Keywords

Navigation