Skip to main content
Log in

State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the state estimation problem is investigated for neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time-delays, the dynamics of the estimation error is globally stable in the mean square and passive from the control input to the output error. Based on the new Lyapunov–Krasovskii functional and passivity theory, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate effectiveness of the proposed method and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chua, L., Yang, L.: Cellular neural networks: theory and applications. IEEE Trans. Circ. Syst. I 35, 1257–1290 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Cichoki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, Chichester (1993)

    Google Scholar 

  3. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall, New York (1998)

    Google Scholar 

  4. Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence infinite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16, 1449–1463 (2005)

    Article  Google Scholar 

  5. Arik, S.: An analysis of exponential stability of delayed neural networks with time-varying delays. Neural Netw. 17, 1027–1031 (2004)

    Article  MATH  Google Scholar 

  6. Song, Q., Cao, J.: Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012)

    Article  MATH  Google Scholar 

  7. Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, C., Li, C., Duan, S.: Stabilization of oscillating neural networks with time-delay by intermittent control. Int. J. Control Autom. Syst. 9, 1074–1079 (2011)

    Article  Google Scholar 

  9. Mahdavi, N., Menhaj, M.B.: A new set of sufficient conditions based on coupling parameters for synchronization of Hopfield like chaotic neural networks. Int. J. Control Autom. Syst. 9, 104–111 (2011)

    Article  Google Scholar 

  10. Li, T., Wang, T., Song, A., Fei, S.: Exponential synchronization for arrays of coupled neural networks with time-delay couplings. Int. J. Control Autom. Syst. 9, 187–196 (2011)

    Article  Google Scholar 

  11. Kwon, O.M., Lee, S.M., Park, J.H.: On improved passivity criteria of uncertain neural networks with time-varying delays. Nonlinear Dyn. 67, 1261–1271 (2012)

    Article  MATH  Google Scholar 

  12. Shao, J.L., Huang, T.-Z., Wang, X.-P.: Further analysis on global robust exponential stability of neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simulat. 17, 1117–1124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, Z.-B., Qiao, H., Peng, J., Zhang, B.: A comparative study of two modeling approaches in neural networks. Neural Netw. 17, 73–85 (2004)

    Article  MATH  Google Scholar 

  14. Qiao, H., Peng, J., Xu, Z.-B., Zhang, B.: A reference model approach to stability analysis of neural networks. IEEE Trans. Syst. Man Cybern. B 33, 925–936 (2003)

    Article  Google Scholar 

  15. Marcus, C.M., Westervelt, R.M.: Stability of analog neural networks with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  16. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences 81, 3088–3092 (1984)

    Article  Google Scholar 

  17. Roska, T., Wu, C.W., Balsi, M., Chua, L.O.: Stability and dynamics of delay-type general cellular neural networks. IEEE Trans. Circ. Syst. I 39, 487–490 (1992)

    Article  MATH  Google Scholar 

  18. Chen, T., Rong, L.: Delay-independent stability analysis of Cohen–Grossberg neural networks. Phys. Lett. A 317, 436–449 (2002)

    Article  MathSciNet  Google Scholar 

  19. Cao, J.D., Wang, J.: Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans. Circ. Syst. I 52, 920–931 (2005)

    Article  MathSciNet  Google Scholar 

  20. Singh, V.: Global robust stability of delayed neural networks: an LMI approach. IEEE Trans. Circuits Syst. II 52, 33–36 (2005)

    Article  Google Scholar 

  21. Park, J.H., Kwon, O.M., Lee, S.M.: LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196, 236–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Park, J.H., Park, C.H., Kwon, O.M., Lee, S.M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199, 716–722 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tseng, K.H., Tsai, J.S.-H., Lu, C.-Y.: Design of delay-dependent exponential estimator for T–S fuzzy neural networks with mixed time-varying interval delays using hybrid Taguchi-genetic algorithm. Neural Process. Lett. 36, 49–67 (2012)

    Article  Google Scholar 

  24. Chen, W.H., Zheng, W.X.: Global asymptotic stability of a class of neural networks with distributed delays. IEEE Trans. Circuits Syst. I 53, 644–652 (2006)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Ho, D.W.C., Liu, X.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16, 279–284 (2005)

    Article  Google Scholar 

  26. Li, T., Fei, S.M., Zhu, Q.: Design of exponential state estimator for neural networks with distributed delays. Nonlinear Anal.: Real World Appl. 10, 1229–1242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Y., Bi, W., Li, W., Wu, Y.: Less conservative results of state estimation for neural networks with time-varying delay. Neurocomputing 73, 1324–1331 (2010)

    Article  Google Scholar 

  28. Park, J.H., Kwon, O.M.: Design of state estimator for neural networks of neutral-type. Appl. Math. Comput. 202, 360–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Park, J.H., Kwon, O.M., Lee, S.M.: State estimation for neural networks of neutral-type with interval time-varying delays. Appl. Math. Comput. 203, 217–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Park, J.H., Kwon, O.M.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208, 69–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Y., Wang, Z., Liu, X.: Design of exponential state estimators for neural networks with mixed time delays. Phys. Lett. A. 364, 401–412 (2007)

    Article  Google Scholar 

  32. Ahn, C.K.: Delay-dependent state estimation for T–S fuzzy delayed Hopfield neural networks. Nonlinear Dyn. 61, 483–489 (2010)

    Article  MATH  Google Scholar 

  33. Jin, L., Nikiforuk, P.N., Gupta, M.M.: Adaptive control of discrete-time nonlinear systems using recurrent neural networks. IEE Proc. Control Theory Appl. 141, 169–176 (1994)

    Article  MATH  Google Scholar 

  34. Huang, H., Feng, G., Cao, J.: Guaranteed performance state estimation of static neural networks with time-varying delay. Neurocomputing 74, 606–616 (2011)

    Article  Google Scholar 

  35. Huang, H., Feng, G., Cao, J.: State estimation for static neural networks with time-varying delay. Neural Netw. 23, 1202–1207 (2010)

    Article  Google Scholar 

  36. Krasovskii, N.M., Lidskii, E.A.: Analytical design of controllers in systems with random attributes. Automat Remote Control 22, 1021–2025 (1961)

    MathSciNet  Google Scholar 

  37. Bao, H., Cao, J.: Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters. Commun. Nonlinear Sci. Numer. Simulat. 16, 3786–3791 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, Q., Cao, J.: Stability of Markovian jump neural networks with impulse control and time-varying delays. Nonlinear Anal.: Real World Appl. 13, 2259–2270 (2012)

    Article  MathSciNet  Google Scholar 

  39. Ma, Q., Xu, S., Zou, Y., Lu, J.: Stability of stochastic Markovian jump neural networks with mode-dependent delays. Neurocomputing 74, 2157–2163 (2011)

    Article  Google Scholar 

  40. Yu, J., Sun, G.: Robust stabilization of stochastic Markovian jumping dynamical networks with mixed delays. Neurocomputing 86, 107–115 (2012)

    Article  Google Scholar 

  41. Li, H., Chen, B., Zhou, Q., Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 94–102 (2009)

    Article  Google Scholar 

  42. Balasubramaniam, P., Lakshmanan, S., Manivannan, A.: Robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. Chaos, Solitons Fractals 45, 483–495 (2012)

    Article  Google Scholar 

  43. Tian, J., Li, Y., Zhao, J., Zhong, S.: Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates. Appl. Math. Comput. 218, 5769–5781 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw. 22, 41–48 (2009)

    Article  Google Scholar 

  45. Balasubramaniam, P., Lakshmanan, S., Jeeva Sathya Theesar, S.: State estimation for Markovian jumping recurrent neural networks with interval time-varying delays. Nonlinear Dyn. 60, 661–675 (2009)

    Article  MathSciNet  Google Scholar 

  46. Ahn, C.K.: Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn. 67, 573–586 (2012)

    Article  MATH  Google Scholar 

  47. Wu, C.W.: Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and observer design. IEEE Trans. Circ. Syst. I 48, 1257–1261 (2001)

    Article  MATH  Google Scholar 

  48. Calcev, G., Gorez, R., Neyer, M.D.: Passivity approach to fuzzy control systems. Automatica 34, 339–344 (1998)

    Article  MATH  Google Scholar 

  49. Xie, L.H., Fu, M.Y., Li, H.Z.: Passivity analysis and passification for uncertain signal processing systems. IEEE Trans. Signal Proces. 46, 2394–2403 (1998)

    Article  Google Scholar 

  50. Zhu, S., Shen, Y., Chen, G.: Exponential passivity of neural networks with time-varying delay and uncertainty. Phys. Lett. A 30, 155–169 (2009)

    Google Scholar 

  51. Song, Q., Liang, J., Wang, Z.: Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72, 1782–1788 (2009)

    Article  Google Scholar 

  52. Chen, Y., Li, W., Bi, W.: Improved results on passivity analysis of uncertain neural networks with time-varying discrete and distributed delays. Neural Process. Lett. 30, 155–169 (2009)

    Article  Google Scholar 

  53. Li, H., Gao, H., Shi, P.: New passivity analysis for neural networks with discrete and distributed delays. IEEE Trans. Neural Netw. 22, 1842–1847 (2010)

    Google Scholar 

  54. Chen, B., Li, H., Lin, C., Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373, 1242–1248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Park, P.G., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu, Z.G., Park, J.H., Su, H., Chu, J.: Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 69, 1323–1332 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju H. Park or H. Y. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, S., Park, J.H., Ji, D.H. et al. State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn 70, 1421–1434 (2012). https://doi.org/10.1007/s11071-012-0544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0544-6

Keywords

Navigation