Skip to main content

Advertisement

Log in

Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuO-NPs) are frequently used for many technical applications, but are also known for their cell toxic potential. In order to investigate a potential use of CuO-NPs as a therapeutic drug for glioma treatment, we have investigated the consequences of an application of CuO-NPs on the cellular copper content and cell viability of C6 glioma cells. CuO-NPs were synthesized by a wet-chemical method and were coated with dimercaptosuccinic acid and bovine serum albumin to improve colloidal stability in physiological media. Application of these protein-coated nanoparticles (pCuO-NPs) to C6 cells caused a strong time-, concentration- and temperature-dependent copper accumulation and severe cell death. The observed loss in cellular MTT-reduction capacity, the loss in cellular LDH activity and the increase in the number of propidium iodide-positive cells correlated well with the specific cellular copper content. C6 glioma cells were less vulnerable to pCuO-NPs compared to primary astrocytes and toxicity of pCuO-NPs to C6 cells was only observed for incubation conditions that increased specific cellular copper contents above 20 nmol copper per mg protein. Both cellular copper accumulation as well as the pCuO-NP-induced toxicity in C6 cells were prevented by application of copper chelators, but not by endocytosis inhibitors, suggesting that liberation of copper ions from the pCuO-NPs is the first step leading to the observed toxicity of pCuO-NP-treated glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dharmadasa R, Jha M, Amos DA, Druffel T (2013) Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl Mater Interfaces 5:13227–13234

    Article  CAS  PubMed  Google Scholar 

  2. Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M (2011) Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 5:9326–9338

    Article  CAS  PubMed  Google Scholar 

  3. Jatti VS, Singh TP (2015) Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J Mech Sci Technol 29:793–798

    Article  Google Scholar 

  4. Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications. Methods Enzymol 509:87–99

    Article  CAS  PubMed  Google Scholar 

  5. Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res 63:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans P, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3:577

    Article  CAS  PubMed  Google Scholar 

  7. Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Duran N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375

    Article  CAS  PubMed  Google Scholar 

  8. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583

    Article  CAS  PubMed  Google Scholar 

  9. An L, Liu S, Yang Z, Zhang T (2012) Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett 213:220–227

    Article  CAS  PubMed  Google Scholar 

  10. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  11. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  12. Liao M, Liu H (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Li Z, Xu P, Xiao L, Yang Z (2013) Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch Toxicol 87:1067–1073

    Article  CAS  PubMed  Google Scholar 

  14. Bai J, Liu Y, Jiang X (2014) Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 35:5805–5813

    Article  CAS  PubMed  Google Scholar 

  15. Kung ML, Hsieh SL, Wu CC, Chu TH, Lin YC, Yeh BW, Hsieh S (2015) Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale 7:1820–1829

    Article  CAS  PubMed  Google Scholar 

  16. Shafagh M, Rahmani F, Delirezh N (2015) CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran J Basic Med Sci 18:993–1000

    PubMed  PubMed Central  Google Scholar 

  17. Wang HY, Hua XW, Wu FG, Li B, Liu P, Gu N, Wang Z, Chen Z (2015) Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces 7:7082–7092

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimipour SY, Sheikhshoaie I, Castro J, Haase W, Mohamadi M, Foro S, Sheikhshoaie M, Esmaeili-Mahani S (2015) A novel cationic copper(II) Schiff base complex: synthesis, characterization, crystal structure, electrochemical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chim Acta 430:245–252

    Article  CAS  Google Scholar 

  19. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621

    Article  CAS  PubMed  Google Scholar 

  20. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  CAS  PubMed  Google Scholar 

  21. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270

    Article  CAS  PubMed  Google Scholar 

  22. Bissell MG, Eng LF, Herman MM, Bensch KG, Miles LE (1975) Quantitative increase of neuroglia-specific GFA protein in rat C-6 glioma cells in vitro. Nature 255:633–634

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Holmes E, Scully S, Birren BW, Wilson RH, de Vellis J (1986) The hormonal regulation of gene expression of glial markers: glutamine synthetase and glycerol phosphate dehydrogenase in primary cultures of rat brain and in C6 cell line. J Neurosci Res 16:251–264

    Article  CAS  PubMed  Google Scholar 

  24. Mangoura D, Sakellaridis N, Jones J, Vernadakis A (1989) Early and late passage C-6 glial cell growth: similarities with primary glial cells in culture. Neurochem Res 14:941–947

    Article  CAS  PubMed  Google Scholar 

  25. Goswami P, Gupta S, Joshi N, Sharma S, Singh S (2015) Astrocyte activation and neurotoxicity: a study in different rat brain regions and in rat C6 astroglial cells. Environ Toxicol Pharmacol 40:122–139

    Article  CAS  PubMed  Google Scholar 

  26. Qian Y, Zheng Y, Taylor R, Tiffany-Castiglioni E (2012) Involvement of the molecular chaperone Hspa5 in copper homeostasis in astrocytes. Brain Res 1447:9–19

    Article  CAS  PubMed  Google Scholar 

  27. Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8:e64372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qian Y, Tiffany-Castiglioni E, Harris ED (1995) Copper transport and kinetics in cultured C6 rat glioma cells. Am J Physiol 269:C892–C898

    CAS  PubMed  Google Scholar 

  29. Chang KW, Huang YL, Wong ZR, Su PH, Huang BM, Ju TK, Yang HY (2013) Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells. Biochem Biophys Res Commun 434:854–860

    Article  CAS  PubMed  Google Scholar 

  30. Koch M, May U, Kuhns S, Drechsler H, Adam N, Hattermann K, Wirtz S, Rose-John S, Scheller J (2007) Interleukin 27 induces differentiation of neural C6-precursor cells into astrocytes. Biochem Biophys Res Commun 364:483–487

    Article  CAS  PubMed  Google Scholar 

  31. Salazar-García S, Silva-Ramírez AS, Ramirez-Lee MA, Rosas-Hernandez H, Rangel-López E, Castillo CG, Santamaría A, Martinez-Castañon GA, Gonzalez C (2015) Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). J Nanopart Res 17:1–13

    Article  Google Scholar 

  32. Filipovic NR, Markovic I, Mitic D, Polovic N, Milcic M, Dulovic M, Jovanovic M, Savic M, Niksic M, Andelkovic K, Todorovic T (2014) A comparative study of in vitro cytotoxic, antioxidant, and antimicrobial activity of Pt(II), Zn(II), Cu(II), and Co(III) complexes with N-heteroaromatic Schiff base (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate. J Biochem Mol Toxicol 28:99–110

    Article  CAS  PubMed  Google Scholar 

  33. Nzengue Y, Lefebvre E, Cadet J, Favier A, Rachidi W, Steiman R, Guiraud P (2009) Metallothionein expression in HaCaT and C6 cell lines exposed to cadmium. J Trace Elem Med Biol 23:314–323

    Article  CAS  PubMed  Google Scholar 

  34. Trejo-Solis C, Jimenez-Farfan D, Rodriguez-Enriquez S, Fernandez-Valverde F, Cruz-Salgado A, Ruiz-Azuara L, Sotelo J (2012) Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 12:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan C, Zhu M, Wang Q, Lu L, Xing S, Fu X, Jiang Z, Zhang S, Li Z, Li Z, Zhu R, Ma L, Xu L (2012) Potent and selective inhibition of T-cell protein tyrosine phosphatase (TCPTP) by a dinuclear copper(II) complex. Chem Commun (Camb) 48:1153–1155

    Article  CAS  Google Scholar 

  36. Dey S, Sherly MC, Rekha MR, Sreenivasan K (2016) Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydr Polym 136:71–80

    Article  CAS  PubMed  Google Scholar 

  37. Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Marchenko YY, Parr MA, Rolich VI, Mikhrina AL, Dobrodumov AV, Pitkin E, Multhoff G (2015) Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1). Nanoscale 7:20652–20664

    Article  CAS  PubMed  Google Scholar 

  38. Shevtsov MA, Nikolaev BP, Yakovleva LY, Parr MA, Marchenko YY, Eliseev I, Yudenko A, Dobrodumov AV, Zlobina O, Zhakhov A, Ischenko AM, Pitkin E, Multhoff G (2015) 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J Control Release 220:329–340

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Yu J, Zhang L, Cai J, Cai D, Lv C (2016) Enhanced anti-tumor effects of doxorubicin on glioma by entrapping in polybutylcyanoacrylate nanoparticles. Tumour Biol 37:2703–2708

    Article  CAS  PubMed  Google Scholar 

  40. Colasanti M, Persichini T, Venturini G, Polticelli F, Musci G (2000) Modulation of the nitric oxide pathway by copper in glial cells. Biochem Biophys Res Commun 275:776–782

    Article  CAS  PubMed  Google Scholar 

  41. Qian Y, Zheng Y, Abraham L, Ramos KS, Tiffany-Castiglioni E (2005) Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. Brain Res Mol Brain Res 134:323–332

    Article  CAS  PubMed  Google Scholar 

  42. Bulcke F, Thiel K, Dringen R (2014) Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology 8:775–785

    CAS  PubMed  Google Scholar 

  43. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  44. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  PubMed  Google Scholar 

  45. Clogston JD, Patri AK (2011) Zeta potential measurement. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Methods in molecular biology, vol 697. Springer, Heidelberg, pp 63–70

  46. Bulcke F, Santofimia-Castaño P, Gonzalez-Mateos A, Dringen R (2015) Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes. J Trace Elem Med Biol 32:168–176

    Article  CAS  PubMed  Google Scholar 

  47. Zak B (1958) Simple procedure for the single sample determination of serum copper and iron. Clin Chim Acta 3:328–334

    Article  CAS  PubMed  Google Scholar 

  48. Hamprecht B, Loffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345

    Article  CAS  PubMed  Google Scholar 

  49. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7:3946–3954

    Article  CAS  PubMed  Google Scholar 

  50. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of rat astrocytes and neurons as model systems to study metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen H (eds) Brain energy metabolism. Neuromethods, vol 90. Springer, Heidelberg, pp 45–72

  51. Scheiber IF, Mercer JF, Dringen R (2010) Copper accumulation by cultured astrocytes. Neurochem Int 56:451–460

    Article  CAS  PubMed  Google Scholar 

  52. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  53. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Brain Res Protoc 2:223–228

    Article  CAS  PubMed  Google Scholar 

  54. Callahan MR, Rose JB, Byrne RH (2002) Long pathlength absorbance spectroscopy: trace copper analysis using a 4.4 m liquid core waveguide. Talanta 58:891–898

    Article  CAS  PubMed  Google Scholar 

  55. Rapisarda VA, Volentini SI, Farias RN, Massa EM (2002) Quenching of bathocuproine disulfonate fluorescence by Cu(I) as a basis for copper quantification. Anal Biochem 307:105–109

    Article  CAS  PubMed  Google Scholar 

  56. Clarke NJ, Laurie SH (1982) The copper-molybdenum antagonism in ruminants. II [1] interactions of thiomolybdates with copper (II) in aqueous media. Inorg Chim Acta 66:L35–L38

    Article  CAS  Google Scholar 

  57. Bulcke F, Dringen R (2016) Handling of copper and copper oxide nanoparticles by astrocytes. Neurochem Res 41:33–43

    Article  CAS  PubMed  Google Scholar 

  58. Armstrong C, Leong W, Lees GJ (2001) Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu+2), iron (Fe+3) and zinc in the hippocampus. Brain Res 892:51–62

    Article  CAS  PubMed  Google Scholar 

  59. Chen SH, Lin JK, Liu SH, Liang YC, Lin-Shiau SY (2008) Apoptosis of cultured astrocytes induced by the copper and neocuproine complex through oxidative stress and JNK activation. Toxicol Sci 102:138–149

    Article  CAS  PubMed  Google Scholar 

  60. Chen SH, Liu SH, Liang YC, Lin JK, Lin-Shiau SY (2001) Oxidative stress and c-Jun-amino-terminal kinase activation involved in apoptosis of primary astrocytes induced by disulfiram-Cu(2+) complex. Eur J Pharmacol 414:177–188

    Article  CAS  PubMed  Google Scholar 

  61. Geppert M, Hohnholt MC, Thiel K, Nurnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  Google Scholar 

  62. Bulcke F, Dringen R (2014) Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes. Neurochem Res 40:15–26

    Article  PubMed  Google Scholar 

  63. Geppert M, Petters C, Thiel K, Dringen R (2013) The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes. J Nanopart Res 15:1–15

    Article  Google Scholar 

  64. Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547

    Article  CAS  PubMed  Google Scholar 

  65. Luther E, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22:375101

    Article  PubMed  Google Scholar 

  66. Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R (2014) Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res 39:372–383

    Article  CAS  PubMed  Google Scholar 

  67. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

    Article  CAS  PubMed  Google Scholar 

  68. Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Moller L (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982

    Article  CAS  PubMed  Google Scholar 

  69. Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P (2012) Oxidative stress induced by cadmium in the C6 cell line: role of copper and zinc. Biol Trace Elem Res 146:410–419

    Article  CAS  PubMed  Google Scholar 

  70. Hohnholt MC, Blumrich EM, Dringen R (2015) Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neurosci Res 93:1127–1137

    Article  CAS  PubMed  Google Scholar 

  71. Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91:1470–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M (2016) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health 32:809–821

    Article  PubMed  Google Scholar 

  73. Scheiber IF, Schmidt MM, Dringen R (2010) Zinc prevents the copper-induced damage of cultured astrocytes. Neurochem Int 57:314–322

    Article  CAS  PubMed  Google Scholar 

  74. Scheiber IF, Dringen R (2011) Copper-treatment increases the cellular GSH content and accelerates GSH export from cultured rat astrocytes. Neurosci Lett 498:42–46

    Article  CAS  PubMed  Google Scholar 

  75. Krotkiewska B, Banas T (1992) Interaction of Zn2+ and Cu2+ ions with glyceraldehyde-3-phosphate dehydrogenase from bovine heart and rabbit muscle. Int. J Biochem 24:1501–1505

    CAS  Google Scholar 

  76. Lai JC, Blass JP (1984) Neurotoxic effects of copper: inhibition of glycolysis and glycolytic enzymes. Neurochem Res 9:1699–1710

    Article  CAS  PubMed  Google Scholar 

  77. Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta Bioenerg 1787:553–560

    Article  CAS  Google Scholar 

  78. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    Article  CAS  PubMed  Google Scholar 

  79. Zhao S, Liu H, Liu Y, Wu J, Wang C, Hou X, Chen X, Yang G, Zhao L, Che H (2013) miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett 333:253–260

    Article  CAS  PubMed  Google Scholar 

  80. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    Article  CAS  Google Scholar 

  82. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  PubMed  PubMed Central  Google Scholar 

  83. Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96:1–27

    Article  CAS  PubMed  Google Scholar 

  84. Huth US, Schubert R, Peschka-Suss R (2006) Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release 110:490–504

    Article  CAS  PubMed  Google Scholar 

  85. Petters C, Dringen R (2015) Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem Int 81:1–9

    Article  CAS  PubMed  Google Scholar 

  86. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  87. McQuaid A, Mason J (1991) A comparison of the effects of penicillamine, trientine, and trithiomolybdate on [35S]-labeled metallothionein in vitro; implications for Wilson’s disease therapy. J Inorg Biochem 41:87–92

    Article  CAS  PubMed  Google Scholar 

  88. Wei H, Frei B, Beckman JS, Zhang WJ (2011) Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am J Physiol Heart Circ Physiol 301:H712–H720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Labbe S, Zhu Z, Thiele DJ (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272:15951–15958

    Article  CAS  PubMed  Google Scholar 

  90. Mohindru A, Fisher JM, Rabinovitz M (1985) Endogenous copper is cytotoxic to a lymphoma in primary culture which requires thiols for growth. Experientia 41:1064–1066

    Article  CAS  PubMed  Google Scholar 

  91. Li M, Deng H, Peng H, Wang Q (2014) Functional nanoparticles in targeting glioma diagnosis and therapies. J Nanosci Nanotech 14:415–432

    Article  CAS  Google Scholar 

  92. Wegscheid ML, Morshed RA, Cheng Y, Lesniak MS (2014) The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin Drug Deliv 11:957–975

    Article  CAS  PubMed  Google Scholar 

  93. Da Silva C, Rueda F, Löwik C, Ossendorp F, Cruz LJ (2016) Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 83:308–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Aaron Schultz would like to thank the Deakin University, School of Life and Environmental Science for the New Ideas Research Award and the Company of Biologists for the Disease Models and Mechanisms Travelling Fellowship. Arundhati Joshi and Kathrin Faber would like to thank the Hans-Böckler Foundation for a PhD fellowship in the Graduate School NanoCompetence at the University of Bremen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Rastedt, W., Faber, K. et al. Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells. Neurochem Res 41, 3004–3019 (2016). https://doi.org/10.1007/s11064-016-2020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2020-z

Keywords

Navigation