Skip to main content

Advertisement

Log in

Evaluation of Impact of Potential Extreme Rainfall Events on Mining in Peru

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The impact that climate change may play in the future sustainability of mining projects has become increasingly important for the mining industry and its stakeholders. The most significant areas of concern are mine infrastructure, supply chains, health and safety conditions, environmental management, community relations and exploration. This is particularly relevant to mining in a country as climatically vulnerable as Peru. This study focuses on the identification of mining regions and main commodities in Peru that are potentially vulnerable to future extreme rainfall events associated with climate change. From a mine design and planning perspective, this study is a first step to illustrate the importance of considering the impacts of different climatic scenarios on mining in Peru. Based on HadGEM2-ES global climate model projections, mining regions across Peru were clustered into “super-regions” with differing potentials of extreme rainfall events during the next three decades. Five indices for precipitation extremes were used, and their variations between 1971–2000 and 2015–2034 were computed. Current and future metallic mining projects expected to take place across Peru in the next 30 years were retrieved from a mining database and subsequently exported into a geographical information systems software to represent their location and interpolate the variation for each precipitation extreme index. The results of this study point out at a decreasing trend in rainfall extremes intensity and frequency in regions of southern Peru. For copper projects located in these regions, a decrease in rainfall events could also imply an eventual decrease in total precipitation and consequently a deficit in water availability during the next three decades. Mining regions in central Peru, with significant number of zinc projects, are likely to experience a marked increase in overall annual precipitation, average daily precipitation intensity, consecutive days of precipitation and number of heavy precipitation days. At a lesser extent than in central Peru, gold projects in northern Peru are also likely to experience an overall increase in precipitation extremes. The approach used for this research could be extended to other mining regions around the world with extreme weather events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. The Coupled Model Intercomparison Project (CMIP) is a global scientific collaboration aimed at improving the understanding of past, present and future climate changes. From its inception in 1995, it has set standardized experimental protocols for studying the output of coupled atmosphere–ocean general circulation models (WCRP 2018). Phase 3 (CMIP3) and Phase 5 (CMIP5) of this project provided the more recent datasets of climate modeling outputs available, with CMIP5 involving a more advanced modeling approach and more models (Eyring et al. 2016). CMIP3 and CMIP5 projections are not directly comparable as the carbon emission scenarios defined in both phases were different. With respect to the next phase, CMIP6, simulation is currently underway and will extend until 2020 (Eyring et al. 2018).

References

  • Albanese, T., & Mcgagh, J. (2011). Future trends in mining. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 21–36). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Bingham, E. L. J. (2011). Closure planning. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 1753–1764). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Bullock, R. L. (2011a). Mineral property feasibility studies. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 227–261). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Bullock, R. L. (2011b). Accuracy of feasibility study evaluations would improve accountability. Mining Engineering, 63(4), 78–85.

    Google Scholar 

  • Bullock, R. L. (2011c). Introduction to underground mine planning. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 1135–1141). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Carril, A. F., Menéndez, C. G., Remedio, A. R. C., Robledo, F., Sörensson, A., Tencer, B., et al. (2012). Performance of a multi-RCM ensemble for South Eastern South America. Climate Dynamics, 39(12), 2747–2768. https://doi.org/10.1007/s00382-012-1573-z.

    Article  Google Scholar 

  • CCCma. (2012). ETCCDI Extremes Indices Archive. In Canadian centre for climate modelling and analysis, environment Canada. http://climate-modelling.canada.ca/climatemodeldata/climdex/climdex.shtml. Accessed 6 April 2018.

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., et al. (2014). Evaluation of the eta simulations nested in three global climate models. American Journal of Climate Change, 03, 438–454. https://doi.org/10.4236/ajcc.2014.35039.

    Article  Google Scholar 

  • Chou, S. C., Marengo, J. A., Lyra, A. A., Sueiro, G., Pesquero, J. F., Alves, L. M., et al. (2012). Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, 38(3–4), 635–653. https://doi.org/10.1007/s00382-011-1002-8.

    Article  Google Scholar 

  • Coelho, C. A. S., & Goddard, L. (2009). El Niño-induced tropical droughts in climate change projections. Journal of Climate, 22(23), 6456–6476. https://doi.org/10.1175/2009jcli3185.1.

    Article  Google Scholar 

  • CORDEX. (2014). Coordinated regional climate downscaling experiment (CORDEX).In World climatic research programme. http://wcrp-cordex.ipsl.jussieu.fr/. Accessed 25 Mar 2014.

  • Damigos, D. (2012). Monetizing the impacts of climate change on the Greek mining sector. Mitigation and Adaptation Strategies for Global Change, 17(8), 865–878. https://doi.org/10.1007/s11027-011-9349-z.

    Article  Google Scholar 

  • DARA. (2012). Climate vulnerability monitor (2nd ed.). Madrid: Fundacion DARA Internacional.

    Google Scholar 

  • Dixon, R. E. (2013). Northern chile and Peru: A hotspot for desalination. Desalination and Water Treatment, 51(1–3), 5–10. https://doi.org/10.1080/19443994.2012.704688.

    Article  Google Scholar 

  • Ecosecurities, & CCG-UC. (2010). Relación entre Agua, Energía y Cambio Climático: Estudio de alto nivel sobre el impacto económico del cambio climático en la industria minera de Argentina, Chile, Colombia y Perú. EcoSecurities Consulting and the Centro de Cambio Global, Universidad Catolica in Chile. http://cambioglobal.uc.cl/index.php/en/proyectos/proyectos-realizados.html. Accessed 20 June 2018.

  • Eyring, V., Flato, G., Meehl, J., Senior, C., Stevens, B., Stouffer, R., & Taylor, K. (2018). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. https://www.wcrp-climate.org/images/modelling/WGCM/CMIP/CMIP6FinalDesign_GMD_180329.pdf. Accessed 24 July 2018.

  • Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., et al. (2016). Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 7, 813–830. https://doi.org/10.5194/esd-7-813-2016.

    Article  Google Scholar 

  • Ford, J. D., Pearce, T., Prno, J., Duerden, F., Ford, L. B., Beaumier, M., et al. (2010). Perceptions of climate change risks in primary resource use industries: A survey of the Canadian mining sector. Regional Environmental Change, 10(1), 65–81. https://doi.org/10.1007/s10113-009-0094-8.

    Article  Google Scholar 

  • Ford, J. D., Pearce, T., Prno, J., Duerden, F., Ford, L. B., Smith, T. R., et al. (2011). Canary in a coal mine: perceptions of climate change risks and response options among Canadian mine operations. Climatic Change, 109(3–4), 399–415. https://doi.org/10.1007/s10584-011-0029-5.

    Article  Google Scholar 

  • Gulizia, C., & Camilloni, I. (2015). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583–595. https://doi.org/10.1002/joc.4005.

    Article  Google Scholar 

  • Hodgkinson, J., Littleboy, A., Howden, M., Moffat, K., & Loechel, B. (2010). Climate adaptation in the Australian mining and exploration industries. In CSIRO Climate Adaptation Flagship Working Paper No. 5. Brisbane, Australia: CSIRO. http://research.csiro.au/climate/wp-content/uploads/sites/54/2016/03/5_WorkingPaper5_CAF_pdf-Standard.pdf. Accessed 24 July 2018.

  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L., et al. (2006). The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27(7–8), 787–813. https://doi.org/10.1007/s00382-006-0158-0.

    Article  Google Scholar 

  • Huamaní, G. S. (2014). Mining in Peru. In Ministry of energy and mines, lima, Peru. http://www.minem.gob.pe/_publicacion.php?idSector=1&idPublicacion=475. Accessed 31 March 2014.

  • ICMM. (2013). Adapting to a changing climate: implications for the mining and metals industry. In J. Drexhage & S. Cooper, (Eds.) London, UK: International Council on Mining and Metals.

  • ICMM. (2014). The role of mining in national economies. (ICMM, Oxford Policy Management, & Raw Materials Group, Eds.) (2nd ed.). London, UK: International Council on Mining and Metals.

  • ICMM. (2015). Member companies. In International council on mining and metals, London, UK. https://www.icmm.com/members/member-companies. Accessed 10 October 2015.

  • INDECI. (2012). Series Cronologicas de Emergencias al 2011. In Compendio estadístico del INDECI en la atencion de emergencias y desastres 2011 (1st ed.). Lima, Peru: National Institute of Civil Defence, (pp. 479–528).

  • INEI. (2014). Compendio Estadistico del Peru 2014. In National Institute of Statistics and Informatics, Lima, Peru. http://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1173/compendio2014.html. Accessed 2 April 2015.

  • IPCC. (2013). Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (p. 29). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • IPE. (2012). Efecto de la minería sobre el empleo, el producto y recaudación en el Perú. Lima: National Mining, Petroleum and Energy Society.

    Google Scholar 

  • Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., et al. (2011). The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4, 543–570. https://doi.org/10.5194/gmd-4-543-2011.

    Article  Google Scholar 

  • KPMG. (2016). Peru: Country mining guide. KPMG International Cooperative. Toronto, Canada. https://assets.kpmg.com/content/dam/kpmg/pdf/2016/03/peru-mining-country-guide.pdf. Accessed 23 March 2018.

  • Locke, P., Clifton, C., & Westra, S. (2011). Extreme weather events and the mining industry. Engineering and Mining Journal, 212(3), 58–59.

    Google Scholar 

  • Loechel, B. (2012). Mining adaptation case study report: Learning from Fortescue Metals Group (FMG) Extreme Weather Events Risk Assessment project. (CSIRO, Ed.). Pullenvale, Australia: CSIRO Earth Sciences and Resource Engineering. https://publications.csiro.au/rpr/download?pid=csiro:EP126964&dsid=DS5. Accessed 24 July 2018.

  • Marengo, J. A., Chou, S. C., Kay, G., Alves, L. M., Pesquero, J. F., Soares, W. R., et al. (2012). Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate Dynamics, 38(9–10), 1829–1848. https://doi.org/10.1007/s00382-011-1155-5.

    Article  Google Scholar 

  • Mason, L., Unger, C., Lederwasch, A., Razian, H., Wynne, L., & Giurco, D. (2013). Adapting to climate risks and extreme weather: a guide for mining and minerals industry professionals. (NCCARF, Ed.). Gold Coast, Australia: National Climate Change Adaptation Research Facility.

  • Minam. (2014). Decreto Supremo N° 040-2014. Reglamento de Protección y Gestión Ambiental para las Actividades de Explotación, Beneficio, Labor General, Transporte y Almacenamiento Minero. Ministry of the environment, lima, Peru. http://sinia.minam.gob.pe/normas/reglamento-proteccion-gestion-ambiental-las-actividades-explotacion. Accessed 3 March 2015.

  • Minem. (2013). Mapa de proyectos mineros: Principales Unidades en Produccion y Proyectos en Exploracion Año 2013. Ministry of energy and mines, lima, Peru. http://www.minem.gob.pe/_publicacion.php?idSector=1&idPublicacion=449. Accessed 31 March 2014.

  • Minem. (2014). Boletin Estadistico de Mineria: Reporte Anual 2013. Ministry of energy and mines, lima, Peru. http://www.minem.gob.pe/minem/archivos/file/Mineria/PUBLICACIONES/VARIABLES/2014/BOLETINREPORTE.pdf. Accessed 23 March 2014.

  • Minem. (2015). Cartera estimada de proyectos mineros. Ministry of energy and mines, lima, Peru. lima, Peru. http://www.minem.gob.pe/minem/archivos/file/Mineria/INVERSION/2015/CEP 02-2015.pdf. Accessed 3 June 2015.

  • Nelson, J., & Schuchard, R. (2011). Adapting to climate change: A guide for the mining industry. (BSR ed.) Business for social responsibility. Business for Social Responsibility. http://www.bsr.org/reports/BSR_Climate_Adaptation_Issue_Brief_Mining.pdf. Accessed 1 March 2014.

  • Pearce, T., Ford, J. D., Prno, J., & Duerden, F. (2009). Climate change and Canadian mining: opportunities for adaptation. Vancouver: The David Suzuki Foundation.

    Google Scholar 

  • Pearce, T., Ford, J. D., Prno, J., Duerden, F., Pittman, J., Beaumier, M., et al. (2011). Climate change and mining in Canada. Mitigation and Adaptation Strategies for Global Change, 16(3), 347–368. https://doi.org/10.1007/s11027-010-9269-3.

    Article  Google Scholar 

  • Peñailillo, R., Santander, A., Acuña, A., & Capstick, S. (2013). A framework for assessing climate change adaptation planning in mining projects. In S. Winchester, F. Valenzuela, & D. Mulligan (Eds.), Third International Seminar on Environmental Issues in the Mining Industry (pp. 141–149). Santiago: Gecamin.

    Google Scholar 

  • Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., & Dettinger, M. D. (2014). The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 4(4364), 8. https://doi.org/10.1038/srep04364.

    Google Scholar 

  • Seiler, C., Hutjes, R. W. A., & Kabat, P. (2013). Likely ranges of climate change in Bolivia. Journal of Applied Meteorology and Climatology, 52(6), 1303–1317. https://doi.org/10.1175/jamc-d-12-0224.1.

    Article  Google Scholar 

  • Senamhi. (2009). Escenarios climaticos para el año 2030 en el Peru. In D. G. Obregon, A. Diaz, G. Rosas, G. Avalos, C. Oria, A. Llacza, & R. Miguel, (Eds.) (1st ed.). Lima, Peru: Senamhi.

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013a). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research Atmospheres. https://doi.org/10.1002/jgrd.50203.

    Google Scholar 

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013b). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research Atmospheres. https://doi.org/10.1002/jgrd.50188.

    Google Scholar 

  • SNL Financial. (2014). SNL metals & mining. http://www.snl.com/Sectors/MetalsMining/Default.aspx. Accessed 31 January 2014.

  • Solman, S. A., Sanchez, E., Samuelsson, P., Rocha, R. P., Li, L., Marengo, J., et al. (2013). Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Climate Dynamics, 41(5–6), 1139–1157. https://doi.org/10.1007/s00382-013-1667-2.

    Article  Google Scholar 

  • Torres, R. R., & Marengo, J. A. (2014). Climate change hotspots over South America: From CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, 117(3), 579–587. https://doi.org/10.1007/s00704-013-1030-x.

    Article  Google Scholar 

  • UNFCCC. (2010). Second national communication to the UNFCCC—Peru. In United Nations framework convention on climate change, Bonn, Germany. http://unfccc.int/resource/docs/natc/pernc2s.pdf. Accessed 23 March 2014.

  • Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research, 114(D2), D02108. https://doi.org/10.1029/2008jd011021.

    Article  Google Scholar 

  • Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z.

    Article  Google Scholar 

  • WCRP. (2018). WCRP Coupled model intercomparison project. https://www.wcrp-climate.org/wgcm-cmip. Accessed 24 July 2018.

  • Wetherelt, A., & Van Der Wielen, K. P. (2011). Introduction to open-pit mining. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 857–876). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Whittle, D. (2011). Open-pit planning and design. In P. Darling (Ed.), SME mining engineering handbook (3rd ed., pp. 877–901). Littleton: Society for Mining, Metallurgy, and Exploration Inc.

    Google Scholar 

  • Yin, L., Fu, R., Shevliakova, E., & Dickinson, R. E. (2013). How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dynamics, 41(11/12), 3127–3143. https://doi.org/10.1007/s00382-012-1582-y.

    Article  Google Scholar 

  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., et al. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870. https://doi.org/10.1002/wcc.147.

    Google Scholar 

Download references

Acknowledgments

Access to the SNL Metals & Mining database has been possible through research funding granted by the International Mining for Development Centre (IM4DC) and the Australian Centre for Sustainable Mining Practices (ACSMP). The corresponding author of this paper is also grateful for the support to conduct his PhD research in the School of Mining Engineering, UNSW, through a Faculty Tuition Fee Scholarship and Research Stipend. The quality of this paper was also improved due to valuable feedback and comments provided by two anonymous reviewers and by the Editor-in-Chief of this journal, Dr John Carranza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco R. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, F.R., Raval, S., Taplin, R. et al. Evaluation of Impact of Potential Extreme Rainfall Events on Mining in Peru. Nat Resour Res 28, 393–408 (2019). https://doi.org/10.1007/s11053-018-9396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9396-1

Keywords

Navigation