Skip to main content
Log in

Surface-enhanced Raman scattering using bismuth nanoparticles: a study with amino acids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bismuth nanoparticles produced by laser ablation synthesis in solution (LASiS) show localized surface plasmon resonances (LSPRs). The nanoparticles show surface-enhanced Raman scattering (SERS) activity for several tested amino acids. Optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM) as well as Raman scattering were used to characterize the samples. The search for new biocompatible nanoparticles for diagnostic purposes is important, and the demonstration that a semimetal is capable to act as a SERS active system opens new possibilities for molecular detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15:3027–3046

    Article  Google Scholar 

  • Carotenuto G, Hison CL, Capezzuto F, Palomba M, Perlo P, Conte P (2009) Synthesis and thermoelectric characterisation of bismuth nanoparticles. J Nanopart Res 11:1729–1738

    Article  Google Scholar 

  • Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  Google Scholar 

  • Devasenathipathy R, Mani V, Chen S-M (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51

    Article  Google Scholar 

  • Dhamelincourt P, Ramirez FJ (1993) Polarized micro-Raman and FT-IR spectra of L-glutamine. Appl Spectrosc 47:446–451

    Article  Google Scholar 

  • Fabris L (2016) SERS tags: the next promising tool for personalized cancer detection? ChemNanoMat 2:249–258

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  • Fleming GD, Finnerty JJ, Campos-Vallette M, Célis F, Aliaga A, Fredes EC, Koch R (2008) Experimental and theoretical Raman and surface enhanced Raman scattering study of cysteine. J Raman Spectrosc 40:632–638

    Article  Google Scholar 

  • Fort E, Gresillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001

    Article  Google Scholar 

  • Grace LI, Cohen R, Dunn TM, Lubman DM, de Vries MS (2002) The R2PI spectroscopy of tyrosine: a vibronic analysis. J Molec Spectrosc 215:204–219

    Article  Google Scholar 

  • Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem A 77:339–346

    Article  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109–2113

    Google Scholar 

  • Hirahara T, Miyamoto K, Matsuda I, Kadono T, Kimura A, Nagao T, Bihlmayer G, Chulkov EV, Qiao S, Shimada K, Namatame H, Taniguchi M, Hasegawa S (2007) Direct observation of spin splitting in bismuth surface states. Phys Rev B 76:153305

    Article  Google Scholar 

  • Hofmann P (2006) The surfaces of bismuth: structural and electronic properties. Progr Surf Sci 81:191–245

    Article  Google Scholar 

  • Jarmelo S, Reva I, Carey PR, Fausto R (2007) Infrared and Raman spectroscopic characterization of the hydrogen-bonding network in L-serine crystal. Vibr Spectrosc 43:395–404

    Article  Google Scholar 

  • Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060

    Article  Google Scholar 

  • Le Ru EC, Meyer M, Blackie E, Etchegoin PG (2008) Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J Raman Spectrosc 39:1127–1134

    Article  Google Scholar 

  • Lima JA Jr, Freire PTC, Melo FEA, Mendes Filho J, Fischer J, Havenith RWA, Broer R, Bordallo HN (2013) Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid l-methionine. Vibr Spectrosc 65:132–141

    Article  Google Scholar 

  • Lombardi JR, Birke RL (2014) Theory of surface-enhanced Raman scattering in semiconductors. J Phys Chem 118:11120–11130

    Article  Google Scholar 

  • Luo Y, Wang C, Qiao Y, Hossain M, Ma L, Su M (2012) In vitro cytotoxicity of surface modified bismuth nanoparticles. J Mater Sci Mater Med 23:2563–2257

    Article  Google Scholar 

  • Lutskii VN (1965) Features of optical absorption of metallic films in the region where the metal turns into a dielectric. Soviet Physics JETP Letters 2:245

    Google Scholar 

  • Mary YS, Ushakumari L, Harikumar B, Varghese HT, Panicker CY (2009) FT-IR, FT-raman and SERS spectra of L-proline. J Iran Chem Soc 6:138–144

    Article  Google Scholar 

  • Mayorga-Martinez CC, Cadevall M, Guix M, Ros J, Merkoci A (2013) Bismuth nanoparticles for phenolic compounds biosensing application. Biosens Bioelectron 40:57–62

    Article  Google Scholar 

  • McMahon JM, Schatza G, Gray SK (2013) Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 15:5415–5423

    Article  Google Scholar 

  • McNay G, Eustace DW, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837

    Article  Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  Google Scholar 

  • Musumeci A, Gosztola D, Schiller T, Dimitrijevic NM, Mujica V, Martin D, Rajh T (2009) SERS of semiconducting nanoparticles (TiO2 hybrid composites). J Am Chem Soc 131:6040–6604

    Article  Google Scholar 

  • Okamoto A, Yamamuro M, Tatarazako N (2014) Acute toxicity of 50 metals to Daphnia magna. J Appl Toxicology 35:824–830

    Article  Google Scholar 

  • Onari S, Miura M, Matsuishi K (2002) Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique. Appl Surf Sci 197–198:615–618

    Article  Google Scholar 

  • Otto A (2005) The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36:497–509

    Article  Google Scholar 

  • Ren B, Lin X-F, Yang Z-L, Liu G-K, Aroca RF, Mao B-W, Tian Z-Q (2003) Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc 125:9598–9599

    Article  Google Scholar 

  • Rosa RGT, Duarte CA, Schreiner WH, Mattoso NP, Bezerra AG Jr, Barison A, Ocampos FMM (2014) Structural, morphological and optical properties of Bi NPs obtained by laser ablation and their selective detection of L-cysteine. Coll & Surf A: Phys and Eng Asp 457:368–373

    Article  Google Scholar 

  • Rosado MT, Duarte MLTS, Fausto R (1997) Vibrational spectra of acid and alkaline glycine salts. Vibr Spectrosc 16:35–54

    Article  Google Scholar 

  • Sandomirskii VB (1967) Quantum size effect in a semimetal film. Soviet Physics JETP 25:158–166

    Google Scholar 

  • Sönnichsen C (2001) Ph.D. Thesis, Fakultät für Physik, Ludwig-Maximilians-Universität München

  • Takayama A, Sato T, Souma S, Takahashi T (2011) Giant out-of-plane spin component and the asymmetry of spin polarization in surface Rashba states of bismuth thin film. Phys Rev Lett 106:166401

    Article  Google Scholar 

  • Tennyson J (2006) Calculating the vibration–rotation spectrum of water. Phys Scr 73:53–56

    Article  Google Scholar 

  • Toudert J, Serna R, de Castro MJ (2012) Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J Phys Chem C 11:20530–20539

    Article  Google Scholar 

  • Wang F, Tang R, Yu H, Patrick C, Gibbons PC, Buhro WE (2008) Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20:3656–3662

    Article  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297

    Article  Google Scholar 

  • Zhao Y, Zhang Z, Danga H (2004) A simple way to prepare bismuth nanoparticles. Mater Lett 58:790–793

    Article  Google Scholar 

Download references

Acknowledgements

We thank Conselho de Desenvolvimento Científico e Tecnológico – CNPq, a Brazilian agency, for support, and Centro de Microscopia Eletrônica da UFPR for the use of the TEM and the confocal Raman microscope.

Funding

This study was funded partially with scholarships by Conselho de Desenvolvimento Científico e Tecnológico – CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Schreiner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, A.G., Cavassin, P., Machado, T.N. et al. Surface-enhanced Raman scattering using bismuth nanoparticles: a study with amino acids. J Nanopart Res 19, 362 (2017). https://doi.org/10.1007/s11051-017-4057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4057-6

Keywords

Navigation