Skip to main content
Log in

Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, well-ordered Au nanoparticle arrays on silicon substrates were employed as efficient metal-enhanced fluorescence (MEF) substrates for investigating the fluorescence properties of the conjugated polymer poly(3-hexylthiophene) (P3HT). The ordered Au nanoparticle arrays were fabricated by block copolymer self-assembly technology, and the particle sizes were controlled by adjusting the molar ratios of HAuCl4 precursor to vinyl pyridine units. The approach is economical and suitable to fabricate large-area MEF substrates. The results about fluorescence properties of P3HT showed that the fluorescence intensities of the P3HT films were improved on ordered Au nanoparticle arrays compared to those on bare silicon substrate and were significantly enhanced with the Au nanoparticle sizes increasing. The mechanism is based on localized surface plasmon resonances, coupling and propagating surface plasmons, and the emission enhancement mainly resulted from the increase of the excitation rate. This work provides a new way to prepare efficient MEF substrates for high-performance fluorescence-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel B, Coskun S, Mohammed M, Williams R, Unalan HE, Aslan K (2015) Metal-enhanced fluorescence from silver nanowires with high aspect ratio on glass slides for biosensing applications. J Phys Chem C Nanomater Interface 119:675–684. doi:10.1021/jp509040f

    Article  Google Scholar 

  • Ayala-Orozco C, Liu JG, Knight MW, Wang Y, Day JK, Nordlander P, Halas NJ (2014) Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett 14:2926–2933. doi:10.1021/nl501027j

    Article  Google Scholar 

  • Chang J-J, Kwon J-H, Yoo SI, Park C, Sohn B-H (2009) Bimodal arrays of two types of nanoparticles by mixtures of diblock copolymer micelles. J Mater Chem 19:1621. doi:10.1039/b815210a

    Article  Google Scholar 

  • Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. doi:10.1021/acs.chemrev.5b00321

    Google Scholar 

  • Cho WJ, Kim Y, Kim JK (2012) Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6:249–255. doi:10.1021/Nn2035236

    Article  Google Scholar 

  • Deng W, Goldys EM (2012) Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences. Langmuir 28:10152–10163. doi:10.1021/la300332x

    Article  Google Scholar 

  • Duarte A, Pu K-Y, Liu B, Bazan GC (2011) Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications†. Chem Mater 23:501–515. doi:10.1021/cm102196t

    Article  Google Scholar 

  • Fayyaz S, Tabatabaei M, Hou R, Lagugné-Labarthet F (2012) Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays. J Phys Chem C 116:11665–11670. doi:10.1021/jp302191z

    Article  Google Scholar 

  • Guo PF, Wu S, Ren QJ, Lu J, Chen ZH, Xiao SJ, Zhu YY (2010) Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays. J Phys Chem Lett 1:315–318. doi:10.1021/jz900119p

    Article  Google Scholar 

  • Hong W, Zhang Y, Gan L, Chen X, Zhang M (2015) Control of plasmonic fluorescence enhancement on self-assembled 2-D colloidal crystals. J Mater Chem C 3:6185–6191. doi:10.1039/c5tc00464k

    Article  Google Scholar 

  • Kannadorai RK, Hegde G, Asundi A (2012) Fluorescence enhancement using silver nanotriangle arrays. J Nanosci Nanotechnol 12:3873–3878. doi:10.1166/jnn.2012.6143

    Article  Google Scholar 

  • Khatua S, Paulo PM, Yuan H, Gupta A, Zijlstra P, Orrit M (2014) Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano 8:4440–4449. doi:10.1021/nn406434y

    Article  Google Scholar 

  • Kravets VG, Zoriniants G, Burrows CP, Schedin F, Geim AK, Barnes WL, Grigorenko AN (2010) Composite au nanostructures for fluorescence studies in visible light. Nano Lett 10:874–879. doi:10.1021/nl903498h

    Article  Google Scholar 

  • Leong K, Zin MT, Ma H, Sarikaya M, Huang F, Jen AK (2010) Surface plasmon enhanced fluorescence of cationic conjugated polymer on periodic nanoarrays. ACS Appl Mater Interfaces 2:3153–3159. doi:10.1021/am100635v

    Article  Google Scholar 

  • Li JZ et al (2010) Phase-selective staining of metal salt for scanning electron microscopy imaging of block copolymer film. Ultramicroscopy 110:1338–1342. doi:10.1016/j.ultramic.2010.06.006

    Article  Google Scholar 

  • Mahmoud MA, Poncheri AJ, El-Sayed MA (2012) Properties of π-conjugated fluorescence polymer-plasmonic nanoparticles hybrid materials. J Phys Chem C 116:13336–13342. doi:10.1021/jp303908e

    Article  Google Scholar 

  • Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3:191–202. doi:10.1021/jz201392k

    Article  Google Scholar 

  • Muskens OL, Giannini V, Sanchez-Gil JA, Gomez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875. doi:10.1021/nl0715847

    Article  Google Scholar 

  • Park DH, Kim MS, Joo J (2010) Hybrid nanostructures using pi-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. Chem Soc Rev 39:2439–2452. doi:10.1039/b907993a

    Article  Google Scholar 

  • Qiu T, Jiang J, Zhang W, Lang X, Yu X, Chu PK (2010) High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays. ACS Appl Mater Interfaces 2:2465–2470. doi:10.1021/am100534h

    Article  Google Scholar 

  • Shan LC et al (2014) Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts: a facile way to large-scale ordered arrays of transition-metal nanoparticles. J Mater Chem C 2:701–707. doi:10.1039/C3tc31333f

    Article  Google Scholar 

  • Shang L, Chen HJ, Dong SJ (2007) Electrochemical preparation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence. J Phys Chem C 111:10780–10784. doi:10.1021/jp068713c

    Article  Google Scholar 

  • Singh MP, Strouse GF (2010) Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. J Am Chem Soc 132:9383–9391. doi:10.1021/ja1022128

    Article  Google Scholar 

  • Smolarek K, Ebenhoch B, Czechowski N, Prymaczek A, Twardowska M, Samuel IDW, Mackowski S (2013) Silver nanowires enhance absorption of poly(3-hexylthiophene). Appl Phys Lett. doi:10.1063/1.4829623

    Google Scholar 

  • Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728. doi:10.1021/jp8060009

    Article  Google Scholar 

  • Wang X et al (2013) Propagating and localized surface plasmons in hierarchical metallic structures for surface-enhanced raman scattering. Small 9:1895–1899. doi:10.1002/smll.201202424

    Article  Google Scholar 

  • Zhang Y, Geddes CD (2010) Metal-enhanced fluorescence from thermally stable rhodium nanodeposits. J Mater Chem 20:8600. doi:10.1039/c0jm01806f

    Article  Google Scholar 

  • Zhang YX, Padhyay A, Sevilleja JE, Guerrant RL, Geddes CD (2010) Interactions of fluorophores with iron nanoparticles: metal-enhanced fluorescence. J Phys Chem C 114:7575–7581. doi:10.1021/Jp910080b

    Article  Google Scholar 

  • Zhang C, Yan Y, Zhao YS, Yao J (2014) From molecular design and materials construction to organic nanophotonic devices. Acc Chem Res 47:3448–3458. doi:10.1021/ar500192v

    Article  Google Scholar 

  • Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 114:5511–5571. doi:10.1021/cr400352m

    Article  Google Scholar 

  • Zu X, Hu X, Lyon LA, Deng Y (2010) In situ fabrication of ordered nanoring arrays via the reconstruction of patterned block copolymer thin films. Chem Commun (Camb) 46:7927–7929. doi:10.1039/c0cc02512g

    Article  Google Scholar 

  • Zu X, Tu W, Deng Y (2011) General approach for fabricating nanoparticle arrays via patterned block copolymer nanoreactors. J Nanopart Res 13:1–13. doi:10.1007/s11051-010-0059-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51273048 and 51203025), the Natural Science Foundation of Guangdong Province (Grant No. S2012040007725).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xihong Zu or Guobin Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, B., Zu, X., Yi, G. et al. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays. J Nanopart Res 18, 281 (2016). https://doi.org/10.1007/s11051-016-3588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3588-6

Keywords

Navigation