Skip to main content
Log in

Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adnan RH, Andersson GG, Polson MIJ, Metha GF, Golovko VB (2015) Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catal Sci Technol 5:1323–1333. doi:10.1039/C4CY01168F

    Article  Google Scholar 

  • Ajaikumara S, Ahlkvist J, Larsson W, Shchukarev A, Leino AR, Kordas K, Mikkola JP (2011) Oxidation of α-pinene over gold containing bimetallic nanoparticles supported on reducible TiO2 by deposition-precipitation method. Appl Catal A 392:11–18. doi:10.1016/j.apcata.2010.10.015

    Article  Google Scholar 

  • Alshammari A, Köckritz A, Kalevaru VN, Bagabas A, Martin A (2012) Influence of single use and combination of reductants on the size, morphology and growth steps of gold nanoparticles in colloidal mixture. Open J Phys Chem 2:252–261. doi:10.4236/ojpc.2012.24033

    Article  Google Scholar 

  • Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846. doi:10.1021/cm500316k

    Article  Google Scholar 

  • Berndt H, Pitsch I, Evert S, Struve K, Pohl MM, Radnik J, Martin A (2003) Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid. Appl Catal A 244:169–179. doi:10.1016/S0926-860X(02)00575-6

    Article  Google Scholar 

  • Briggs D, Seah MP (eds) (1990) Practical surface analysis. Wiley, New York

    Google Scholar 

  • Camellone MF, Marx D (2014) Nature and role of activated molecular oxygen species at the gold/titania interface in the selective oxidation of alcohols. J Phys Chem C 118:20989–21000. doi:10.1021/jp5060233

    Article  Google Scholar 

  • Castillejos E, Bachiller-Baeza B, Asedegbega-Nieto E, Guerrero-Ruiz A, Rodríguez-Ramos I (2015) Selective 1,3-butadiene hydrogenation by gold nanoparticles deposited & precipitated onto nanocarbon materials. RSC Adv 5:81583–81598. doi:10.1039/C5RA17388D

    Article  Google Scholar 

  • Chen M, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746. doi:10.1021/ar040309d

    Article  Google Scholar 

  • Choudhary VR, Chaudhari PA, Narkhede VS (2003) Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts. Catal Commun 4:171–175. doi:10.1016/S1566-7367(03)00027-X

    Article  Google Scholar 

  • Choudhary VR, Dhar A, Jana P, Jha R, Uphade BS (2005) A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem 7:768–770. doi:10.1039/B509003B

    Article  Google Scholar 

  • Condi de Godoi F, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429. doi:10.1016/j.cej.2013.09.006

  • Csapó E, Oszkó A, Varga E, Juhász A, Buzás N, Kőrösi L, Majzik A, Dékány I (2012) Synthesis and characterization of Ag/Au alloy and core(Ag)-shell(Au) nanoparticles. Colloids Surf A 415:281–287. doi:10.1016/j.colsurfa.2012.09.005

    Article  Google Scholar 

  • Cybula A, Priebe JB, Pohl MM, Sobczak JW, Schneider M, Zielińska-Jurek A, Brückner A, Zaleska A (2014) The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl Catal B 152–153:202–211. doi:10.1016/j.apcatb.2014.01.042

    Article  Google Scholar 

  • Dai Y, Chen S (2015) Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition. Appl Mater Interfaces 7:823–829. doi:10.1021/am5073029

    Article  Google Scholar 

  • de Moura EM, Garcia MAS, Gonçalves RV, Kiyohara PK, Jardim RF, Rossi LM (2015) Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Adv 5:15035–15041. doi:10.1039/C4RA16159A

    Article  Google Scholar 

  • Dimitratos N, Prati L (2005) Gold based bimetallic catalysts for liquid phase applications. Gold Bull 38:73–77. doi:10.1007/BF03215236

    Article  Google Scholar 

  • Enache DI, Knight DW, Hutchings GJ (2005) Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal Lett 103:43–52. doi:10.1007/s10562-005-6501-y

    Article  Google Scholar 

  • Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W (2014) Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2. J Catal 317:99–104. doi:10.1016/j.jcat.2014.05.006

    Article  Google Scholar 

  • Ferraria AM, Carapeto AP, Botelho do Rego AM (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991. doi:10.1016/j.vacuum.2012.05.031

    Article  Google Scholar 

  • Fonseca J, Royer S, Bion N, Pirault-Roy L, Rangel M, Duprez D, Epron F (2012) Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina. Appl Catal B 128:10–20. doi:10.1016/j.apcatb.2012.03.037

    Article  Google Scholar 

  • Francesco IN, Fontaine-Vive F, Antoniotti S (2014) Synergy in the catalytic activity of bimetallic nanoparticles and new synthetic methods for the preparation of fine chemicals. ChemCatChem 6:2784–2791. doi:10.1002/cctc.201402252

    Article  Google Scholar 

  • Guczi L, Beck A, Horváth A, Koppány Z, Stefler G, Frey K, Sajó I, Geszti O, Bazin D, Lynch J (2003) AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. J Mol Catal A 204–205:545–552. doi:10.1016/S1381-1169(03)00337-6

    Article  Google Scholar 

  • Gupta UN, Dummer NF, Pattisson S, Jenkins RL, Knight DW, Bethell D, Hutchings GJ (2015) Solvent-free aerobic epoxidation of dec-1-ene using gold/graphite as a catalyst. Catal Lett 145:689–696. doi:10.1007/s10562-014-1425-z

    Article  Google Scholar 

  • Han Y, Han L, Zhang L, Dong S (2015) Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal-organic frameworks for electrocatalytic oxidation of hydrazine. J Mater Chem A 3:14669–14674. doi:10.1039/C5TA03090K

    Article  Google Scholar 

  • Harada M, Asakura K, Toshima N (1993) Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J Phys Chem 97:5103–5114. doi:10.1021/j100121a042

    Article  Google Scholar 

  • Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett 16:405–408. doi:10.1246/cl.1987.405

    Article  Google Scholar 

  • Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31(231–233):235–325. doi:10.1016/S0167-5729(98)00002-8

    Google Scholar 

  • Hong Y, Jing X, Huang J, Sun D, Odoom-Wubah T, Yang F, Du M, Li Q (2014) Biosynthesized bimetallic Au-Pd nanoparticles supported on TiO2 for solvent-free oxidation of benzyl alcohol. ACS Sustain Chem Eng 2:1752–1759. doi:10.1021/sc500181z

    Article  Google Scholar 

  • Hosseini-Sarvari M, Razmi Z, Doroodmand MM (2014) Palladium supported on zinc oxide nanoparticles: synthesis, characterization, and application as heterogeneous catalyst for Mizoroki-Heck and Sonogashira reactions under ligand-free and air atmosphere conditions. Appl Catal A 475:477–486. doi:10.1016/j.apcata.2014.02.002

    Article  Google Scholar 

  • http://srdata.nist.gov/xps/. Accessed 27 November 2015

  • Hu J, Chen L, Zhu K, Suchopar A, Richards R (2007) Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catal Today 122:277–283. doi:10.1016/j.cattod.2007.01.012

    Article  Google Scholar 

  • Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295. doi:10.1016/0021-9517(85)90383-5

    Article  Google Scholar 

  • Hutchings GJ (2004) New directions in gold catalysis. Gold Bull 37:3–11. doi:10.1007/BF03215511

    Article  Google Scholar 

  • Jiang K, Smith DA, Pinchuk A (2013) Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C 117:27073–27080. doi:10.1021/jp409067h

    Article  Google Scholar 

  • Jiang T, Jia C, Zhang L, He S, Sang Y, Li H, Li Y, Xu X, Liu H (2015) Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 7:209–217. doi:10.1039/C4NR05905K

    Article  Google Scholar 

  • Kaizuka K, Miyamura H, Kobayashi S (2010) Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters. J Am Chem Soc 132:15096–15098. doi:10.1021/ja108256h

    Article  Google Scholar 

  • Kaya M, Zahmakiran M, Özkar S, Volkan M (2012) Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. Appl Mater Interfaces 4:3866–3873. doi:10.1021/am3005994

    Article  Google Scholar 

  • Köckritz A, Sebek M, Dittmar A, Radnik J, Brückner A, Bentrup U, Pohl MM, Hugl H, Mägerlein W (2006) Ru-catalyzed oxidation of primary alcohols. J Mol Catal A 246:85–99. doi:10.1016/j.molcata.2005.10.020

    Article  Google Scholar 

  • Kulik A, Martin A, Pohl MM, Fischer C, Köckritz A (2014) Insights into gold-catalyzed synthesis of azelaic acid. Green Chem 16:1799–1806. doi:10.1039/C3GC41822G

    Article  Google Scholar 

  • Kumar A, Sreedhar B, Chary KVR (2015) Highly dispersed gold nanoparticles supported on SBA-15 for vapor phase aerobic oxidation of benzyl alcohol. J Nanosci Nanotechnol 15:1714–1724. doi:10.1166/jnn.2015.9022

    Article  Google Scholar 

  • Lee LC, Xiao C, Huang W, Zhao Y (2015) Palladium-gold bimetallic nanoparticle catalysts prepared by ‘‘controlled release’’ from metalloaded interfacially cross-linked reverse micelles. New J Chem 39:2459–2466. doi:10.1039/C4NJ01905A

    Article  Google Scholar 

  • Li Y, Wang L, Yan R, Han J, Zhang S (2015) Gold nanoparticles supported on Ce-Zr oxides for the oxidative esterification of aldehydes to esters. Catal Sci Technol 5:3682–3692. doi:10.1039/C5CY00241A

    Article  Google Scholar 

  • Liu X, Wang A, Yang X, Zhang T, Mou CY, Su DS, Li J (2009) Synthesis of thermally stable and highly active bimetallic Au–Ag nanoparticles on inert supports. Chem Mater 21:410–418. doi:10.1021/cm8027725

    Article  Google Scholar 

  • Ma Y, Qing S, Gao Z, Mamat X, Zhang J, Li H, Eli W, Wang T (2015) Tandem hydroformylation and hydrogenation of dicyclopentadiene by Co3O4 supported gold nanoparticles. Catal Sci Technol 5:3649–3657. doi:10.1039/C5CY00217F

    Article  Google Scholar 

  • Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett 2:1235–1237. doi:10.1021/nl025774n

    Article  Google Scholar 

  • Marx S, Baiker A (2009) Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol. J Phys Chem C 113:6191–6201. doi:10.1021/jp808362m

    Article  Google Scholar 

  • Meenakshisundaram S, Nowicka E, Miedziak PJ, Brett GL, Jenkins RL, Dimitratos N, Taylor SH, Knight DW, Bethell D, Hutchings GJ (2010) Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discuss 145:341–356. doi:10.1039/B908172K

    Article  Google Scholar 

  • Mehri A, Kochkar H, Berhault G, Cómbita Merchán DF, Blasco T (2015) One-pot deposition of gold on hybrid TiO2 nanoparticles and catalytic application in the selective oxidation of benzyl alcohol. Mater Chem Phys 149–150:59–68. doi:10.1016/j.matchemphys.2014.09.033

    Article  Google Scholar 

  • Miao YX, Ren LH, Shi L, Li WC (2015) Hydrothermal synthesis of manganese oxide nanorods as a highly active support for gold nanoparticles in CO oxidation and their stability at low temperature. RSC Adv 5:62732–62738. doi:10.1039/C5RA12182E

    Article  Google Scholar 

  • Miedziak P, He Q, Edwards JK, Taylor SH, Knight DW, Tarbit B, Kiely CJ, Hutchings GJ (2011a) Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catal Today 163:47–54. doi:10.1016/j.cattod.2010.02.051

    Article  Google Scholar 

  • Miedziak P, Sankar M, Dimitratos N, Lopez-Sanchez JA, Carley AF, Knight DW, Taylor SH, Kiely CJ, Hutchings GJ (2011b) Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catal Today 164:315–319. doi:10.1016/j.cattod.2010.10.028

    Article  Google Scholar 

  • Munnik P, Velthoen MEZ, de Jongh PE, de Jong KP, Gommes CJ (2014) Nanoparticle growth in supported nickel catalysts during methanation reaction-larger is better. Angew Chem Int Ed 53:9493–9497. doi:10.1002/anie.201404103

    Article  Google Scholar 

  • Nikawa T, Naya SI, Tada H (2015) Rapid removal and decomposition of gaseous acetaldehyde by the thermo- and photo-catalysis of gold nanoparticle-loaded anatase titanium(IV) oxide. J Colloid Interface Sci 456:161–165. doi:10.1016/j.jcis.2015.06.016

    Article  Google Scholar 

  • Nishimura S, Yakita Y, Katayama M, Higashimine K, Ebitani K (2013) The role of negatively charged Au states in aerobic oxidation of alcohols over hydrotalcite supported AuPd nanoclusters. Catal Sci Technol 3:351–359. doi:10.1039/C2CY20244A

    Article  Google Scholar 

  • Nowicka E, Hofmann JP, Parker SF, Sankar M, Lari GM, Kondrat SA, Knight DW, Bethell D, Weckhuysen BM, Hutchings GJ (2013) In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Phys Chem Chem Phys 15:12147–12155. doi:10.1039/C3CP50710F

    Article  Google Scholar 

  • Papa F, Negrila C, Dobrescu G, Miyazaki A, Balint I (2011) Preparation, characterization and catalytic behavior of Pt-Cu nanoparticles in methane combustion. J Nat Gas Chem 20:537–542. doi:10.1016/S1003-9953(10)60221-6

    Article  Google Scholar 

  • Qin YH, Jia YB, Jiang Y, Niu DF, Zhang XS, Zhou XG, Niu L, Yuan WK (2012) Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. Int J Hydrog Energy 37:7373–7377. doi:10.1016/j.ijhydene.2012.01.124

    Article  Google Scholar 

  • Quintanilla A, García-Rodríguez S, Domínguez CM, Blasco S, Casas JA, Rodriguez JJ (2012) Supported gold nanoparticle catalysts for wet peroxide oxidation. Appl Catal B 111–112:81–89. doi:10.1016/j.apcatb.2011.09.020

    Article  Google Scholar 

  • Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5:172–177. doi:10.1039/B207290D

    Article  Google Scholar 

  • Rautiainen S, Simakova O, Guo H, Leino AR, Kordás K, Murzin D, Leskelä M, Repo T (2014) Solvent controlled catalysis: synthesis of aldehyde, acid or ester by selective oxidation of benzyl alcohol with gold nanoparticles on alumina. Appl Catal A 485:202–206. doi:10.1016/j.apcata.2014.08.003

    Article  Google Scholar 

  • Sandoval A, Louis C, Zanella R (2013) Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea. Appl Catal B 140–141:363–377. doi:10.1016/j.apcatb.2013.04.039

    Article  Google Scholar 

  • Santra C, Rahman S, Bojja S, James OO, Sen D, Maity S, Mohanty AK, Mazumderd S, Chowdhury B (2013) Barium, calcium and magnesium doped mesoporous ceria supported gold nanoparticle for benzyl alcohol oxidation using molecular O2. Catal Sci Technol 3:360–370. doi:10.1039/C2CY20523H

    Article  Google Scholar 

  • Sharma AS, Shah D, Kaur H (2015) Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Adv 5:42935–42941. doi:10.1039/C5RA06091E

    Article  Google Scholar 

  • Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CF II, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996. doi:10.1021/ja026764r

    Article  Google Scholar 

  • Signoretto M, Menegazzo F, Trevisan V, Pinna F, Manzoli M, Boccuzzi F (2013) Investigation on the stability of supported gold nanoparticles. Catalysts 3:656–670. doi:10.3390/catal3030656

    Article  Google Scholar 

  • Su FZ, Liu YM, Wang LC, Cao Y, He HY, Fan KN (2008) Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew Chem Int Ed 47:334–337. doi:10.1002/anie.200704370

    Article  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. doi:10.1021/cr400544s

    Article  Google Scholar 

  • Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315. doi:10.1021/ja2120647

    Article  Google Scholar 

  • Veith GM, Lupini AR, Pennycook SJ, Ownby GW, Dudney NJ (2005) Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering. J Catal 231:151–158. doi:10.1016/j.jcat.2004.12.008

    Article  Google Scholar 

  • Villa A, Wang D, Su DS, Prati L (2015) New challenges in gold catalysis: bimetallic systems. Catal Sci Technol 5:55–68. doi:10.1039/C4CY00976B

    Article  Google Scholar 

  • Wang LC, He L, Liu Q, Liu YM, Chen M, Cao Y, He HY, Fan KN (2008a) Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on β-MnO2 nanorods. Appl Catal A 344:150–157. doi:10.1016/j.apcata.2008.04.013

    Article  Google Scholar 

  • Wang LC, Liu YM, Chen M, Cao Y, He HY, Fan KN (2008b) MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J Phys Chem C 112:6981–6987. doi:10.1021/jp711333t

    Article  Google Scholar 

  • Wang A, Liu XY, Mou CY, Zhang T (2013) Understanding the synergistic effects of gold bimetallic catalysts. J Catal 308:258–271. doi:10.1016/j.jcat.2013.08.023

    Article  Google Scholar 

  • Wang Z, Xu C, Wang H (2014) A facile preparation of highly active Au/MgO catalysts for aerobic oxidation of benzyl alcohol. Catal Lett 144:1919–1929. doi:10.1007/s10562-014-1344-z

    Article  Google Scholar 

  • Wang H, Wang C, Yan H, Yi H, Lu J (2015) Precisely-controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J Catal 324:59–68. doi:10.1016/j.jcat.2015.01.019

    Article  Google Scholar 

  • Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, Chichester

    Book  Google Scholar 

  • Wei H, Li J, Yu J, Zheng J, Su H, Wang X (2015) Gold nanoparticles supported on metal oxides as catalysts for the direct oxidative esterification of alcohols under mild conditions. Inorg Chim Acta 427:33–40. doi:10.1016/j.ica.2014.11.024

    Article  Google Scholar 

  • Wojtysiak S, Kudelski A (2012) Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols. Colloids Surf A 410:45–51. doi:10.1016/j.colsurfa.2012.06.012

    Article  Google Scholar 

  • Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327. doi:10.1021/ja910513h

    Article  Google Scholar 

  • Yang CH, Chen G, Zhang L (2011) In situ immobilizing of gold nanoparticles onto the surface of alumina particles. Res Chem Intermed 37:785–789. doi:10.1007/s11164-011-0347-2

    Article  Google Scholar 

  • Yu H, Gibbons PC, Kelton KF, Buhro WE (2001) Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J Am Chem Soc 123:9198–9199. doi:10.1021/ja016529t

    Article  Google Scholar 

  • Zeng J, Lee JY, Zhou W (2006) Activities of Pt/C catalysts prepared by low temperature chemical reduction methods. Appl Catal A 308:99–104. doi:10.1016/j.apcata.2006.04.019

    Article  Google Scholar 

  • Zheng J, Lin H, Wang Y, Zheng X, Duan X, Yuan Y (2013) Efficient low-temperature selective hydrogenation of esters on bimetallic Au–Ag/SBA-15 catalyst. J Catal 297:110–118. doi:10.1016/j.jcat.2012.09.023

    Article  Google Scholar 

  • Zielińska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A (2011) Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl Catal B 101:504–514. doi:10.1016/j.apcatb.2010.10.022

    Article  Google Scholar 

Download references

Acknowledgments

F. G.-V. gratefully acknowledges a scholarship from the German Academic Exchange Service (DAAD), within the Leibniz–DAAD Research Fellowship programme to pursue his postdoctoral research at the Leibniz Institute for Catalysis (LIKAT). We thank Dr. M. Schneider, A. Simmula, and Dr. C. Kreyenschulte for their contributions to the catalysts characterization. The authors acknowledge the financial support from LIKAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Gómez-Villarraga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Villarraga, F., Radnik, J., Martin, A. et al. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina. J Nanopart Res 18, 141 (2016). https://doi.org/10.1007/s11051-016-3453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3453-7

Keywords

Navigation