Skip to main content
Log in

An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of “as-produced” short multi-walled carbon nanotubes (MWCNTs) in N,N-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV–visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  Google Scholar 

  • Barisci JN, Tahhan M, Wallace GG, Badaire S, Vaugien T, Maugey M, Poulin P (2004) Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv Funct Mater 14(2):133–138. doi:10.1002/adfm.200304500

    Article  Google Scholar 

  • Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498. doi:10.1016/j.compscitech.2008.06.018

    Article  Google Scholar 

  • Biswas C, Kim KK, Geng HZ, Park HK, Lim SC, Chae SJ, Kim SM, Lee YH, Nayhouse M, Yun MH (2009) Strategy for high concentration nanodispersion of single-walled carbon nanotubes with diameter selectivity. J Phys Chem C 113(23):10044–10051. doi:10.1021/jp9017629

    Article  Google Scholar 

  • Blanch AJ, Lenehan CE, Quinton JS (2010) Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J Phys Chem B 114(30):9805–9811. doi:10.1021/jp104113d

    Article  Google Scholar 

  • Blanch AJ, Quinton JS, Shapter JG (2013) The role of sodium dodecyl sulfate concentration in the separation of carbon nanotubes using gel chromatography. Carbon 60:471–480. doi:10.1016/j.carbon.2013.04.064

    Article  Google Scholar 

  • Cai JY, Min J, McDonnell J, Church JS, Easton CD, Humphries B, Lucas S, Woodhead A (2012) An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds. Carbon 50(12):4655–4662

    Article  Google Scholar 

  • Cai JY, Min J, Miao M, Church JS, McDonnell J, Knott R, Hawkins S, Huynh C (2014) Enhanced mechanical performance of CNT/polymer composite yarns by γ-irradiation. Fibers Polym 15(2):322–325

    Article  Google Scholar 

  • Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354(1):144–151. doi:10.1016/j.jcis.2010.10.027

    Article  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652. doi:10.1016/j.carbon.2006.02.038

    Article  Google Scholar 

  • Colthrup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99. doi:10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  • Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. doi:10.1021/nl904286r

    Article  Google Scholar 

  • Dyshin A, Eliseeva O, Bondarenko G, Kolker A, Zakharov A, Fedorov M, Kiselev M (2013) Dispersion of single-walled carbon nanotubes in alcohol-cholic acid mixtures. Russ J Phys Chem A 87(12):2068–2073

    Article  Google Scholar 

  • Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095

    Article  Google Scholar 

  • Gao HJ, Zhang SH, Huang DP, Zheng LQ (2012) Dispersion of multi-wall carbon nanotubes by an ionic liquid-based polyether in aqueous solution. Colloid Polym Sci 290(8):757–762. doi:10.1007/s00396-012-2619-9

    Article  Google Scholar 

  • Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ, Coleman JN (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718. doi:10.1021/jp0626216

    Article  Google Scholar 

  • Guillory WA (1977) Introduction to Molecular Structure and Spectroscopy. In: Busch DH, Shull H (eds) The Allyn and Bacon chemistry series. Allyn and Bacon Inc, Boston

    Google Scholar 

  • Haggenmueller R, Rahatekar SS, Fagan JA, Chun J, Becker ML, Naik RR, Krauss T, Carlson L, Kadla JF, Trulove PC, Fox DF, DeLong HC, Fang Z, Kelley SO, Gilman JW (2008) Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 24(9):5070–5078. doi:10.1021/la703008r

    Article  Google Scholar 

  • Hameed N, Church JS, Salim NV, Hanley TL, Amini A, Fox BL (2013) Dispersing single-walled carbon nanotubes in ionic liquids: a quantitative analysis. RSC Adv 3:20034–20039

    Article  Google Scholar 

  • Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Dispersion Sci Technol 24(1):1–41. doi:10.1081/dis-120017941

    Article  Google Scholar 

  • Hough LA, Islam MF, Hammouda B, Yodh AG, Heiney PA (2006) Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett 6(2):313–317. doi:10.1021/nl051871f

    Article  Google Scholar 

  • Husanu M, Baibarac M, Preda N, Baltog I (2008) Resonant Raman scattering and absorption spectroscopy studies on individual carbon nanotubes in surfactant solutions. J Optoelectron Adv Mater 10(7):1722–1726

    Google Scholar 

  • Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94. doi:10.1016/S0021-9797(02)00176-5

    Article  Google Scholar 

  • Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103(1):2555–2558

    Article  Google Scholar 

  • Kharissova OV, Kharisov BI, de Casas Ortiz EG (2013) Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv 3(47):24812–24852. doi:10.1039/C3RA43852J

    Article  Google Scholar 

  • Kim JH, Kataoka M, Shimamoto D, Muramatsu H, Jung YC, Tojo T, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS (2009) Defect-enhanced dispersion of carbon nanotubes in dna solutions. ChemPhysChem 10(14):2414–2417. doi:10.1002/cphc.200900362

    Article  Google Scholar 

  • Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci USA 105(24):8221–8226. doi:10.1073/pnas.0711449105

    Article  Google Scholar 

  • Li X, Chen X, Yao Y, Li N, Chen X, Bi X (2013) Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sens J 13(12):4749–4756

    Article  Google Scholar 

  • Lopez-Pastor M, Dominguez-Vidal A, Ayora-Canada MJ, Simonet BM, Lendl B, Valcarcel M (2008) Separation of single-walled carbon nanotubes by use of ionic liquid-aided capillary electrophoresis. Anal Chem 80(8):2672–2679. doi:10.1021/ac701788r

    Article  Google Scholar 

  • Moreno M, Sanchez Arribas A, Bermejo E, Zapardiel A, Chicharro M (2011) Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes. Electrophoresis 32(8):877–883. doi:10.1002/elps.201000498

    Article  Google Scholar 

  • Nepal D, Geckeler KE (2006) pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3):406–412

    Article  Google Scholar 

  • Ntim SA, Sae-Khow O, Witzmann FA, Mitra S (2011) Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J Colloid Interface Sci 355(2):383–388. doi:10.1016/j.jcis.2010.12.052

    Article  Google Scholar 

  • Pierlot AP, Woodhead AL, Church JS (2014) Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 117:598–603. doi:10.1016/j.saa.2013.09.050

    Article  Google Scholar 

  • Poggi MA, Bottomley LA, Lillehei PT (2004) Measuring the adhesion forces between alkanethiol-modified AFM cantilevers and single walled carbon nanotubes. Nano Lett 4(1):61–64. doi:10.1021/nl0348701

    Article  Google Scholar 

  • Premkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8(9):1299–1313. doi:10.1002/smll.201101786

    Article  Google Scholar 

  • Primo EN, Cañete-Rosales P, Bollo S, Rubianes MD, Rivas GA (2013) Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA. Colloids Surf B 108:329–336

    Article  Google Scholar 

  • Randhawa P, Park J-S, Sharma S, Kumar P, Shin M-S, Sekhon SS (2012) Effect of surfactant (Triton X-100) concentration on dispersion and functionalization of multiwall carbon nanotubes. J Nanoelectron Optoelectron 7(3):279–286. doi:10.1166/jno.2012.1303

    Article  Google Scholar 

  • Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428. doi:10.1016/j.jcis.2008.09.015

    Article  Google Scholar 

  • Shin J-Y, Premkumar T, Geckeler KE (2008) Dispersion of single-walled carbon nanotubes by using surfactants: are the type and concentration important? Chem A Eur J 14(20):6044–6048. doi:10.1002/chem.200800357

    Article  Google Scholar 

  • Singh RP, Jain S, Ramarao P (2013) Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant. J Nanopart Res 15(10):1–19

    Article  Google Scholar 

  • Song Z, Dai J, Zhao S, Zhou Y, Su F, Cui J, Yan Y (2014) Aqueous dispersion of pristine single-walled carbon nanotubes prepared by using a vinylimidazole-based polymer dispersant. RSC Adv 4(5):2327–2338. doi:10.1039/C3RA42864H

    Article  Google Scholar 

  • Suttipong M, Tummala NR, Striolo A, Batista CS, Fagan J (2013) Salt-specific effects in aqueous dispersions of carbon nanotubes. Soft Matter 9(14):3712–3719. doi:10.1039/C3SM27889A

    Article  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science 128–130:37–46. doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  • Wallace EJ, Sansom MS (2009) Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study. Nanotechnology 20(4):045101

    Article  Google Scholar 

  • Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14(5):364–371. doi:10.1016/j.cocis.2009.06.004

    Article  Google Scholar 

  • Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12):2540–2546. doi:10.1021/nn800510g

    Article  Google Scholar 

  • Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112. doi:10.1016/j.mser.2005.04.002

    Article  Google Scholar 

  • Xie H, Becraft EJ, Baughman RH, Dalton AB, Dieckmann GR (2008) Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J Pept Sci 14(2):139–151. doi:10.1002/psc.978

    Article  Google Scholar 

  • Yang B, Ren L, Li L, Tao X, Shi Y, Zheng Y (2013) The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV–Vis–NIR absorption spectroscopy. Analyst 138(21):6671–6676

    Article  Google Scholar 

  • Yu A, Bekyarova E, Itkis ME, Fakhrutdinov D, Webster R, Haddon RC (2006) Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J Am Chem Soc 128(30):9902–9908. doi:10.1021/ja062041m

    Article  Google Scholar 

  • Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623. doi:10.1016/j.carbon.2006.10.010

    Article  Google Scholar 

  • Yu A, Su C-CL, Roes I, Fan B, Haddon RC (2009) Gram-scale preparation of surfactant-free, carboxylic acid groups functionalized, individual single-walled carbon nanotubes in aqueous solution. Langmuir 26(2):1221–1225. doi:10.1021/la902341w

    Article  Google Scholar 

  • Yurekli K, Mitchell CA, Krishnamoorti R (2004) Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126(32):9902–9903. doi:10.1021/ja047451u

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Deakin University, CSIRO and AFFRIC for the funding to carry out this study. We also acknowledge Ms. Andrea Woodhead for her assistance in collecting some of the Raman data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanxiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Church, J.S., Kafi, A. et al. An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents. J Nanopart Res 16, 2513 (2014). https://doi.org/10.1007/s11051-014-2513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2513-0

Keywords

Navigation