Skip to main content
Log in

A facile in situ fabrication and visible-light-response photocatalytic properties of porous carbon sphere/InOOH nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Visible-light-response porous carbon sphere/InOOH nanocomposites were synthesized through a facile hydrothermal process. The grain size of the crystalline InOOH is estimated around 14 nm, and the nanocomposites show a size range from 100 to 200 nm. The as-prepared nanocomposites possess a porous structure and a specific surface area of 45 mg−1. A possible in situ formation process was proposed after conducting a series of contrast experiments. Carbon spheres (CSs) were suggested to act as spherical templates and reducing reagents during the synthesis process of nanocomposites. The whole process involves the hydrolysis of indium ions, the redox reactions on surfaces groups of the CSs, and the dehydration of indium hydroxide. UV–Vis diffuse reflectance spectrum revealed a red shift of light absorption of the nanocomposites to about 600 nm compared with pure InOOH. The photocatalytic degradation for methylene blue was performed under visible light irradiation, 90 % of methylene blue was degraded after reacting for 6 h. We propose that the red shift was attributed to the interaction between carbon sphere and InOOH, and the CSs may act as photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen L, Ma X, Liu Y, Zhang Y, Wang W, Liang Y, Zhang Z (2007) 3D architectures of InOOH: ultrasonic-assisted synthesis, growth mechanism, and optical properties. Eur J Inorg Chem 28:4508–4513

    Article  Google Scholar 

  • Chen M-L, Zhang F-J, Oh W-C (2008) Photocatalytic degradation of methylene blue by CNT/TiO2 composites prepared from MWCNT and titanium n-butoxide with benzene. J Korean Ceram Soc 45(11):651–657

    Article  Google Scholar 

  • Deshmukh AA, Mhlanga SD, Coville NJ (2010) Carbon spheres. Mater Sci Eng 70(1):1–28

    Article  Google Scholar 

  • Du A, Ng YH, Bell NJ, Zhu Z, Amal R, Smith SC (2011) Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J Phys Chem Lett 2(8):894–899

    Article  Google Scholar 

  • Ge S, Wang B, Lin J, Zhang L (2013) C, N-Codoped InOOH microspheres: one-pot synthesis, growth mechanism and visible light photocatalysis. CrystEngComm 15(4):721–728

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  Google Scholar 

  • Hou C, Zhang Q, Li Y, Wang H (2012) P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution. J Hazard Mater 205:229–235

    Article  Google Scholar 

  • Hu Y, Liu Y, Qian H, Li Z, Chen J (2010) Coating colloidal carbon spheres with CdS nanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir 26(23):18570–18575

    Article  Google Scholar 

  • Ishibashi K-I, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210

    Article  Google Scholar 

  • Kudo A, Miseki Y (2008) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  Google Scholar 

  • Kusiak-Nejman E, Janus M, Grzmil B, Morawski AW (2011) Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO2 photocatalysts. J Photochem Photobiol A Chem 226(1):68–72

    Article  Google Scholar 

  • Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24(8):1084–1088

    Article  Google Scholar 

  • Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X (2007) Wide band gap p-block metal oxyhydroxide InOOH: a new durable photocatalyst for benzene degradation. J Phys Chem C 111(49):18348–18352

    Article  Google Scholar 

  • Long R, English NJ, Prezhdo OV (2012) Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis. J Am Chem Soc 134(34):14238–14248

    Article  Google Scholar 

  • Matos J, Garcia A, Zhao L, Titirici MM (2010) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl Catal A 390(1–2):175–182

    Article  Google Scholar 

  • Navarro Yerga RM, Álvarez Galván MC, Del Valle F, Villoria De La Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2(6):471–485

    Article  Google Scholar 

  • Pierotti RA, Rouquerol J (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Google Scholar 

  • Song L, Chen C, Zhang S, Wei Q (2011) Synthesis of Se-doped InOOH as efficient visible-light-active photocatalysts. Catal Commun 12(11):1051–1054

    Article  Google Scholar 

  • Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601

    Article  Google Scholar 

  • Sun X, Liu J, Li Y (2005) Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem A Eur J 12(7):2039–2047

    Article  Google Scholar 

  • Tian W, Yang L-M, Xu Y-Z, Weng S-F, Wu J-G (2000) Sugar interaction with metal ions. FT-IR study on the structure of crystalline galactaric acid and its K+, NH4 +, Ca2+, Ba2+, and La3+. Carbohydr Res 324(1):45–52

    Article  Google Scholar 

  • Wang X, Hu P, Fangli Y, Yu L (2007) Preparation and characterization of ZnO hollow spheres and ZnO-carbon composite materials using colloidal carbon spheres as templates. J Phys Chem C 111(18):6706–6712

    Article  Google Scholar 

  • Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B 100(1–2):179–183

    Article  Google Scholar 

  • Yu Y, Yu JC, Yu J-G, Kwok Y-C, Che Y-K, Zhao J-C, Ding L, Ge W-K, Wong P-K (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A 289(2):186–196

    Article  Google Scholar 

  • Yuan RS, Guan RB, Shen WZ, Zheng JT (2005) Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. J Colloid Interface Sci 282(1):87–91

    Article  Google Scholar 

  • Zhang K, Oh WC (2010) Kinetic Study of the visible light-induced sonophotocatalytic degradation of MB solution in the presence of Fe/TiO2-MWCNT catalyst. Bull Korean Chem Soc 31(6):1589–1595

    Article  Google Scholar 

  • Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386

    Article  Google Scholar 

  • Zhang X, Quan X, Chen S, Yu H (2011) Constructing graphene/InNbO4 composite with excellent adsorptivity and charge separation performance for enhanced visible-light-driven photocatalytic ability. Appl Catal B 105(1):237–242

    Article  Google Scholar 

  • Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11):9777–9789

    Article  Google Scholar 

  • Zhao W, Wang Y, Yang Y, Tang J, Yang Y (2011) Carbon spheres supported visible-light-driven CuO–BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl Catal B Environ 115:90–99

    Google Scholar 

  • Zhao D, Sheng G, Chen C, Wang X (2012a) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B 111:303–308

    Article  Google Scholar 

  • Zhao W, Wang Y, Yang Y, Tang J, Yang Y (2012b) Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl Catal B 115:90–99

    Article  Google Scholar 

  • Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269

    Article  Google Scholar 

  • Zhu HL, Yao KH, Zhang H, Yang DR (2005) InOOH hollow spheres synthesized by a simple hydrothermal reaction. J Phys Chem B 109(44):20676–20679

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51002111 and 21001086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Shi or Jianguo Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Xu, L., Shi, W. et al. A facile in situ fabrication and visible-light-response photocatalytic properties of porous carbon sphere/InOOH nanocomposites. J Nanopart Res 16, 2295 (2014). https://doi.org/10.1007/s11051-014-2295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2295-4

Keywords

Navigation