Skip to main content
Log in

Copolymer template control of gold nanoparticle synthesis via thermal annealing

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Here we present an original process combining top-down and bottom-up approaches by annealing a thin gold film evaporated onto a hole template made by etching a PS–PMMA copolymer film. Such process allows a better control of the gold nanoparticle size distribution which provides a sharper localized surface plasmon resonance. This makes such route appealing for sensing applications since the figure of merit of the Au nanoparticles obtained after thermal evaporation is more than doubled. Such process could besides allow tuning the localized surface plasmon resonance by using copolymers with various molecular weights and thus be attractive for surface-enhanced Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  • Asakawa K, Fujimoto A (2005) Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer. Appl Opt 44:7475–7482

    Article  CAS  Google Scholar 

  • Asakawa K, Hiraoka T (2002) Nanopatterning with microdomains of block copolymers using reactive-ion etching selectivity. Jpn J Appl Phys 41:6112–6118

    Article  CAS  Google Scholar 

  • Fahmi A, Pietsch T, Mendoza C, Cheval N (2009) Functional hybrid materials. Mater Today 12:44–50

    Article  CAS  Google Scholar 

  • Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  • Haynes C-L, Mc Farland A-D, Zhao L, Van Duyne R-P, Schatz G-C, Gunnarsson L (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342

    Article  CAS  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  • Jia K, Bijeon JL, Adam PM, Ionescu RE (2012a) Sensitive localized surface plasmon resonance multiplexing protocols. Anal Chem 84:8020–8027

    Article  CAS  Google Scholar 

  • Jia K, Bijeon J-L, Adam P-M, Ionescu RE (2012b) Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 8:143–151

    Article  Google Scholar 

  • Kang GB, Kim S-I, Kim YT, Park JH (2009) Fabrication of metal nano dot dry etching mask using block copolymer thin film. Curr Appl Phys 9:82–84

    Article  Google Scholar 

  • Karlsson R, Stahlberg R (1995) Surface-plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Anal Biochem 228:274–280

    Article  CAS  Google Scholar 

  • Krausch G, Magerle R (2002) Nanostructured thin films via self-assembly of block copolymers. Adv Mater 14:1579–1583

    Article  CAS  Google Scholar 

  • Lamarre SS, Sarrazin A, Proust J, Yockell-Lelièvre H, Plain J, A.-M. Ritcey A-M et al (2013) Optical properties of Au colloids self-organized into rings via copolymer templates. Journal of Nanoparticle Research 15

  • Maurer T, Abdellaoui N, Gwiazda A, Chaumont D, Adam P-M, Vial A et al (2013a) Oxidation free silver nanoparticles for Surface Enhanced Raman Spectroscopy. NANO 8:1350016

    Article  Google Scholar 

  • Maurer T, Sarrazin A, Plaud A, Béal J, Nicolas R, Lamarre SS et al (2013b) Strategies for self-organization of Au nanoparticles assisted by copolymer templates. Proc. SPIE 8809, Plasmonics: Metallic Nanostructures and Their Optical Properties XI, 88092E (September 11, 2013)

  • Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2:136–159

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:15–34

    Article  Google Scholar 

  • Tseng Y-C, Darling S-B (2010) Block copolymer nanostructures for technology. Polymers 2:470–489

    Article  CAS  Google Scholar 

  • Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal Chem 17:557–582

    Article  CAS  Google Scholar 

  • Zhu S, Chen TP, Liu YC, Yu SF, Liu Y (2010) Tunable surface plasmon resonance of gold nanoparticles self-assembled on fused silica substrate. Electrochem Solid-State Lett 13:96–99

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of NanoMat (www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche,” the “Conseil régional Champagne-Ardenne,” the “Fonds Européen de Développement Régional (FEDER) fund,” and the “Conseil général de l’Aube” is acknowledged. T. M thanks the DRRT (Délégation Régionale à la Recherche et à la Technologie) of Champagne-Ardenne, the EPF and the UTT via the strategic program «CODEN», and the Labex ACTION project (contract ANR-11-LABX-01-01) and the CNRS via the chaire «optical nanosensors» for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaud, A., Sarrazin, A., Béal, J. et al. Copolymer template control of gold nanoparticle synthesis via thermal annealing. J Nanopart Res 15, 2109 (2013). https://doi.org/10.1007/s11051-013-2109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2109-0

Keywords

Navigation