Skip to main content
Log in

Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structural and optical properties of cobalt-doped zinc oxide (Co-doped ZnO) nanoparticles have been investigated. The nanopowder with Co concentrations up to 5 at% was synthesized by a co-precipitation method. The physical structure and the chemical states of the Co-doped ZnO were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV–Visible reflectance and cathodoluminescence (CL) spectroscopy. The results show that cobalt ions predominantly occupy Zn2+ sites in the wurtzite crystal lattice and possess a valence state of 2+. CL analysis revealed that the incorporation of Co2+ creates a new emission band at 1.85 eV, but quenched the near-band-edge luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becheri A, Dürr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low G, McEvoy S (1999) Role of Nanoparticles in Photocatalysis. J Nanopart Res 1:439–458

    Article  CAS  Google Scholar 

  • Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Article  CAS  Google Scholar 

  • Eliliarassi R, Chandrasekaran G (2013) Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J Mater Sci-Mater El 24:96–105

    Article  Google Scholar 

  • Gaudon M, Toulemonde O, Demourgues A (2007) Green coloration of Co-doped ZnO explained from structural refinement and bond considerations. Inorg Chem 46:10996–11002

    Article  CAS  Google Scholar 

  • Gupta A, Verma NK, Bhatti HS (2007) Effect of killer impurities on optical properties of ZnO at low temperature. J Low Temp Phys 147:49–57

    Article  CAS  Google Scholar 

  • Hao H, Qin M, Li P (2012) Structural, optical, and magnetic properties of Co-doped ZnO nanorods fabricated by a facile solution route. J Alloy Compd 515:143–148

    Article  CAS  Google Scholar 

  • He R, Hocking RK, Tsuzuki T (2012a) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132:1035–1040

    Article  CAS  Google Scholar 

  • He R, Hocking RK, Tsuzuki T (2012b) Local structure and photocatalytic property of sol–gel synthesized ZnO doped with transition metal oxides. J Mater Sci 47:3150–3158

    Article  CAS  Google Scholar 

  • Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515:6000–60014

    Article  CAS  Google Scholar 

  • Ivill M, PEarson SJ, Rawal S, LEu L, Sadik P, Das R et al (2008) Structure and magnetism of cobalt-doped ZnO thin films. New J Phys 10:065002

    Article  Google Scholar 

  • Jin Z, Murakami M, Fukumura T, Matsumoto Y, Ohtomo A, Kawasaki M, Koinuma H (2000) Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films. J Cryst Growth 214–215:55–58

    Article  Google Scholar 

  • Koidl P (1977) Optical absorption of Co2+ in ZnO. Phys Rev B 15:2493–2499

    Article  CAS  Google Scholar 

  • Lee YR, Ramdas AK, Aggarwal RL (1988) Energy gap, excitonic, and internal Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors. Phys Rev B 38:10600–10610

    Article  CAS  Google Scholar 

  • Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022

    Article  CAS  Google Scholar 

  • Li YJ, Wang CY, Lu MY, Li KM, Chen LJ (2008) Electrodeposited hexagonal ringlike superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties. Cryst Growth Des 8:2598–2602

    Article  CAS  Google Scholar 

  • Li P, Wang S, Li J, Wei Y (2012) Structural and optical properties of Co-doped ZnO nanocrystallites prepared by a one-step solution route. J Lumin 132:220–225

    Article  CAS  Google Scholar 

  • Liu Y, Fang Q, Wu M, Li Y, Lv Q, Zhou J et al (2007) Structure and photoluminescence of arrayed Zn1−xCoxO nanorods grown via hydrothermal method. J Phys D Appl Phys 40:4592–4596

    Article  CAS  Google Scholar 

  • Loan TT, Long NN, Ha LH (2009) Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. J Phys D Appl Phys 42:065412

    Article  Google Scholar 

  • Lommens P, Smet PF, de Mello Donega C, Meijerink A, Piraux L, Michotte S et al (2006) Photoluminescence properties of Co2+-doped ZnO nanocrystals. J Lumin 118:245–250

    Article  CAS  Google Scholar 

  • Look DC, Claflin B, Alivov YI, Park SJ (2004) The future of ZnO light emitters. Phys Status Solidi (a) 201:2203–2212

    Article  CAS  Google Scholar 

  • Müller S, Zhou M, Li Q, Ronning C (2009) Intra-shell luminescence of transition-metal-implanted zinc oxide nanowires. Nanotechnology 20:135704

    Article  Google Scholar 

  • Opel M, Nielsen KW, Bauer S, Goennenwein STB, CEzar JC, Schmeisser D, Simon J, Mader W, Gross R (2008) Nanosized superparamagnetic precipitates in cobalt-doped ZnO. Eur Phys J B63:437–444

    Google Scholar 

  • Ozerov I, Chabre F, Marine W (2005) Incorporation of cobalt into ZnO nanoclusters. Mater Sci Eng C 25:614–617

    Article  Google Scholar 

  • Pal B, Giria PK (2010) High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J Appl Phys 108:084332

    Google Scholar 

  • Pan F, Song C, Liu XJ, Yang YC, Zeng F (2008) Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mat Sci Eng R 62:1–35

    Article  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-Ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Peng YZ, Liew T, Chong TC, Song WD, Li HL, Liu W (2005) Growth and characterization of dual-beam pulsed-laser-deposited Zn1-xCoxO thin films. J Appl Phys 98:114909

    Article  Google Scholar 

  • Polyakov AY, Smirnov NB, Govorkov AV, Kozhukhova EA, Heo YW, Ivill MP et al (2005) Properties of Mn- and Co-doped bulk ZnO crystals. J Vac Sci Technol B 23:274–279

    Article  CAS  Google Scholar 

  • Potzger K, Zhou S (2009) Non-DMS related ferromagnetism in transition metal doped zinc oxide. Phys Status Solidi B246:1147–1167

    Article  Google Scholar 

  • Prellier W, Fouchet A, Mercey B (2003) Oxide-diluted magnetic semiconductors: a review of the experimental status. J Phys 15:R1583–R1601

    CAS  Google Scholar 

  • Qiu X, Li G, Sun X, Li L, Fu X (2008) Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 19:215703

    Article  Google Scholar 

  • Risbud AS, Spaldin NA, Chen ZQ, Stemmer S, Seshadri R (2003) Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys Rev B 68:205202

    Article  Google Scholar 

  • Schulz HJ, Thiede M (1987) Optical spectroscopy of 3d7 and 3d8 impurity configurations in a wide-gap semiconductor (ZnO:Co, Ni, Cu). Phys Rev B 35:18–34

    Article  CAS  Google Scholar 

  • Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119

    Article  CAS  Google Scholar 

  • Ton-That C, Foley M, Phillips M, Tsuzuki T, Smith Z (2012) Correlation between the structural and optical properties of Mn-doped ZnO nanoparticles. J Alloy Compd 522:114–117

    Article  CAS  Google Scholar 

  • Tsuzuki T, He R, Wang J, Sun L, Wang X, Hocking RK (2012) Reduction of the photocatalytic activity of ZnO nanoparticles for UV protection applications. Int J Nanotechnol 9:1017–1029

    Article  CAS  Google Scholar 

  • Wang X, Zheng R, Liu Z, Ho H-p, Xu J, Ringer SP (2008) Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19:455702

    Article  Google Scholar 

  • Wang B, Xia C, Iqbal J, Tang N, Sun Z, Lv Y et al (2009) Influences of Co doping on the structural, optical and magnetic properties of ZnO nanorods synthesized by hydrothermal route. Solid State Sci 11:1419–1422

    Article  CAS  Google Scholar 

  • Wang A, Zhong Z, Lu C, Lv L, Wang X, Zhang B (2011a) Study on field-emission characteristics of electrodeposited Co-doped ZnO thin films. Phys B 406:1049–1052

    Article  CAS  Google Scholar 

  • Wang T, Liu Y, Fang Q, Xu Y, Li G, Sun Z et al (2011b) Morphology and optical properties of Co doped ZnO textured thin films. J Alloy Compd 509:9116–9122

    Article  CAS  Google Scholar 

  • Xian FL, Xu LH, Wang XX, Li XY (2012) Crystallographic, optical and magnetic properties of Co-doped ZnO thin films synthesized by sol gel route. Cryst Res Technol 47:423–428

    Article  CAS  Google Scholar 

  • Yamamoto S (2012) Photoluminescence quenching in cobalt doped ZnO nanocrystals. J Appl Phys 111:094310

    Article  Google Scholar 

  • Yuhas BD, Zitoun DO, Pauzauskie PJ, He R, Yang P (2006) Transition-Metal doped zinc oxide nanowires. Angew Chem Int Edit 118:434–437

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the facilities, and the scientific and technical assistance of the Electron Microscope Facility, Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Tsuzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Tang, B., Ton-That, C. et al. Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J Nanopart Res 15, 2030 (2013). https://doi.org/10.1007/s11051-013-2030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2030-6

Keywords

Navigation