Skip to main content
Log in

Preparation and luminescence properties of SiO2@LaBO3:Eu3+ nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Spherical SiO2 particles having a LaBO3:Eu3+ shell have been prepared by coating of silica nanoparticles (size around 130–150 nm) with a LaBO3:Eu3+ sol–gel precursor and subsequent calcination. The SiO2@LaBO3:Eu3+ nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, and transmission electron microscopy. The XRD and FTIR results revealed that the LaBO3:Eu3+ layer on SiO2 nanoparticles formed an H-LaBO3 crystal phase when calcination at a temperature up to 700 °C. Both excitation and emission properties were characterized. The strong excitation lines at 393 and 465 nm of SiO2@LaBO3:Eu3+ indicated that the core–shell phosphor matched well with the output wavelength of near-UV (350–400 nm) or blue LED (450 nm) chips in phosphor-converted W-LEDs. The emission spectra of the 5D0 → 7F J (J = 0, 1, 2, 3, and 4) transitions at blue/near-UV light showed strong emission lines around 615 nm which were attributed to the induced electric dipole transition of 5D0 → 7F2. The coating cycles affected the luminescence of SiO2@LaBO3:Eu3+ nanoparticles and their CIE chromaticity coordinate shifted from orange-red to the deep red zone with the increase in the coating cycles (up to 3). The luminescence lifetime of the Eu3+ ions in SiO2@LaBO3:Eu3+ was 2.32 ms. Such a luminescent material may be useful for display and light applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antic-Fidancev E, Lemaitre-Blaise M, Chaminade J et al (1992) Luminescence and crystal field calculation of aragonite-type LaBO3:Eu3+. J Alloys Compd 180:223–228

    Article  CAS  Google Scholar 

  • Ashfaq M, Tabassum R, Ahmed M et al (2012) Improved method for preparation of anhydrous silica by microwave irradiation with spectroscopic characterization and toxicity assay. J Non-Cryst Solids 358:847–853

    Article  CAS  Google Scholar 

  • Back M, Massari A, Boffelli M et al (2012) Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. J Nanopart Res 14:1–10

    Article  Google Scholar 

  • Bao A, Lai H, Yang Y et al (2010) Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. J Nanopart Res 12:635–643

    Article  CAS  Google Scholar 

  • Böhlhoff R, Bambauer H, Hoffmann W (1971) Die Kristallstruktur von Hoch-LaBO3*. Z Kristallogr 133:386–395

    Article  Google Scholar 

  • Boyer D, Bertrand-Chadeyron G, Mahiou R et al (1999) Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3. J Mater Chem 9:211–214

    Article  CAS  Google Scholar 

  • Chen Y, Iroh J (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem Mater 11:1218–1222

    Article  CAS  Google Scholar 

  • Daldosso M, Falcomer D, Speghini A et al (2008) Synthesis, EXAFS investigation and optical spectroscopy of nanocrystalline Gd3Ga5O12 doped with Ln3+ ions (Ln = Eu, Pr). Opt Mater 30:1162–1167

    Article  CAS  Google Scholar 

  • Galceran M, Pujol M, Méndez C et al (2009) Synthesis of monoclinic KGd(WO4)2 nanocrystals by two preparation methods. J Nanopart Res 11:717–724

    Article  CAS  Google Scholar 

  • Giesber H, Ballato J, Chumanov G et al (2003) Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3. J Appl Phys 93:8987–8994

    Article  CAS  Google Scholar 

  • Gundiah G, Shimomura Y, Kijima N et al (2008) Novel red phosphors based on vanadate garnets for solid state lighting applications. Chem Phys Lett 455:279–283

    Article  CAS  Google Scholar 

  • Guo C, Luan L, Chen C et al (2008) Preparation of Y2O2S:Eu3+ phosphors by a novel decomposition method. Mater Lett 62:600–602

    Article  CAS  Google Scholar 

  • Huang Y, Zhao W, Cao Y et al (2008) Photoluminescence of Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y). J Solid State Chem 181:2161–2164

    Article  CAS  Google Scholar 

  • Jia G, Zhang C, Wang C et al (2012) Uniform and well-dispersed LaBO3 hierarchical architectures: synthesis, formation, and luminescence properties. CrystEngComm 14:579–584

    Article  CAS  Google Scholar 

  • Lemanceau S, Bertrand-Chadeyron G, Mahiou R et al (1999) Synthesis and characterization of H-LnBO3 orthoborates (Ln = La, Nd, Sm, and Eu). J Solid State Chem 148:229–235

    Article  CAS  Google Scholar 

  • Lin J, Huang Y, Zhang J et al (2007) Preparation and characterization of lanthanum borate nanowires. Mater Lett 61:1596–1600

    Article  CAS  Google Scholar 

  • Liu X, Lin J (2007) Synthesis and characterization of monodisperse spherical core–shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphors for field emission displays. J Nanopart Res 9:869–875

    Article  CAS  Google Scholar 

  • Ma J, Wu Q, Ding Y (2007) Assembly and deagglomeration of lanthanum orthoborate nanobundles. J Am Ceram Soc 90:3890–3895

    CAS  Google Scholar 

  • Marin R, Sponchia G, Riello P et al (2012) Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs. J Nanopart Res 14:1–13

    Article  Google Scholar 

  • Méndez-Vivar J, Mendoza-Bandala A (2000) Spectroscopic study on the early stages of the polymerization of hybrid TEOS–RSi (OR′)3 sols. J Non-Cryst Solids 261:127–136

    Article  Google Scholar 

  • Neeraj S, Kijima N, Cheetham A (2004) Novel red phosphors for solid state lighting; the system Bi x Ln1−x VO4; Eu3+/Sm3+ (Ln = Y, Gd). Solid State Commun 131:65–69

    Article  CAS  Google Scholar 

  • Pązik R, Zych A, Stręk W (2009) Luminescence properties of Eu3+:KGd(WO4)2 nanocrystallites. Mater Chem Phys 115:536–540

    Article  Google Scholar 

  • Sá Ferreira R, Nobre S, Granadeiro C et al (2006) A theoretical interpretation of the abnormal 5D0 → 7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J Lumin 121:561–567

    Article  Google Scholar 

  • Sertchook H, Avnir D (2003) Submicron silica/polystyrene composite particles prepared by a one-step sol–gel process. Chem Mater 15:1690–1694

    Article  CAS  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Tukia M, Hölsä J, Lastusaari M et al (2005) Eu3+ doped rare earth orthoborates, RBO3(R = Y, La and Gd), obtained by combustion synthesis. Opt Mater 27:1516–1522

    Article  CAS  Google Scholar 

  • Velchuri R, Kumar B, Devi V et al (2011) Preparation and characterization of rare earth orthoborates, LnBO3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu by metathesis reaction: ESR of LaBO3:Gd and luminescence of LaBO3:Tb, Eu. Mater Res Bull 46:1219–1226

    Article  CAS  Google Scholar 

  • Wang H, Lin C, Liu X et al (2005) Monodisperse spherical core–shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays. Appl Phys Lett 87:181907-3

    Google Scholar 

  • Wang H, Yang J, Zhang C et al (2009) Synthesis and characterization of monodisperse spherical SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles with core–shell structure. J Solid State Chem 182:2716–2724

    Article  CAS  Google Scholar 

  • Wei D, Huang Y, Shi L et al (2009) Preparation and luminescence of Eu3+-activated Ca9ZnLi(PO4)7 phosphor by a solid reaction-sintering. J Electrochem Soc 156:H885–H889

    Article  CAS  Google Scholar 

  • Xie N, Huang Y, Qiao X et al (2010) A red-emitting phosphor of fully concentrated Eu3+-based molybdenum borate Eu2MoB2O9. Mater Lett 64:1000–1002

    Article  CAS  Google Scholar 

  • Yadav R, Dutta R, Kumar M et al (2009) Improved color purity in nano-size Eu3+-doped YBO3 red phosphor. J Lumin 129:1078–1082

    Article  CAS  Google Scholar 

  • Yu M, Lin J, Fang J (2005) Silica spheres coated with YVO4:Eu3+ layers via sol–gel process: a simple method to obtain spherical core–shell phosphors. Chem Mater 17:1783–1791

    Article  CAS  Google Scholar 

  • Zhang Z, Wang Y (2012) Investigation of the electronic structure and photoluminescence properties of Eu3+ in Sr2Mg1−x Zn x Si2O7 (0 ≤ x ≤ 1). Chin Sci Bull 57:935–940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from National Natural Science Foundation of China (Nos. 51273134, 61204128) and Jiangsu Provincial Natural Science Foundation of China (No. BK2012635). Alfred Deakin Postdoctoral Fellowship awarded to Chuanxiang Qin is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, C., Qin, L., Chen, G. et al. Preparation and luminescence properties of SiO2@LaBO3:Eu3+ nanoparticles. J Nanopart Res 15, 1827 (2013). https://doi.org/10.1007/s11051-013-1827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1827-7

Keywords

Navigation