Skip to main content

Advertisement

Log in

Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study was to determine the possible neurotoxicity and mechanisms underlying the effects of nano-ZnO with sizes of 20–80 nm on central nervous system (CNS). The cytotoxicity of nano-ZnO was investigated in PC12 cells. The viability of cells was observed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the generation of reactive oxygen species (ROS) for cells was evaluated by a fluorometry assay. The apoptosis of cells was detected and analyzed by flow cytometry. In addition, effects of nano-ZnO on the properties of high-voltage-activated (HVA) calcium currents were studied in acutely isolated rat hippocampal pyramidal neurons using the whole-cell patch clamp technique. The results of MTT assay showed that nano-ZnO (10−4 g/mL) caused a significant decrease in cell viability (P < 0.05). Nano-ZnO induced intracellular accumulation of ROS and the apoptosis of PC12 cells with the increasing concentration of nano-ZnO in flow cytometric assay (P < 0.05). Further results of electrophysiological recording indicated that 10−4 g/mL nano-ZnO first altered the current–voltage curve and the peak amplitudes of HVA calcium currents at 10 min of the recording, and the peak current amplitudes were increased significantly at the end of 30 min (P < 0.05). All these results suggested that the increase of intracellular ROS was one of potential mechanisms of cellular apoptosis induced by nano-ZnO. Nano-ZnO could cause the elevation of cytosolic calcium levels by enhancement of HVA calcium currents, which would increase the generation of intracellular ROS, and consequently promote the neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337. doi:10.1016/S0143-4160(03)00141-6

    Article  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  Google Scholar 

  • Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signaling: an overview. Semin Cell Dev Biol 12:3–10. doi:10.1006/scdb.2000.0211

    Article  CAS  Google Scholar 

  • Bouron A, Boisseau S, De Waard M, Peris L (2006) Differential down-regulation of voltage-gated calcium channel currents by glutamate and BDNF in embryonic cortical neurons. Eur J Neurosci 24:699–708. doi:10.1111/j.1460-9568.2006.04946.x

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi:10.1021/nl052326h

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi:10.1021/es052069i

    Article  CAS  Google Scholar 

  • Campbell LW, Hao SY, Thibault O, Blalock EM, Landfield PW (1996) Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci 16:6286–6295

    CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  Google Scholar 

  • Doering CJ, Zamponi GW (2003) Molecular pharmacology of high voltage-activated calcium channels. J Bioenerg Biomembr 35:491–505. doi:10.1023/B:JOBB.0000008022.50702.1a

    Article  CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178. doi:10.1289/ehp.9030

    Article  CAS  Google Scholar 

  • Elhamdani A, Bossu JL, Feltz A (1995) ADP exerts a protective effect against rundown of the Ca2+ current in bovine chromaffin cells. Pflug Arch Eur J Phy 430:401–409. doi:10.1007/BF00373916

    Article  CAS  Google Scholar 

  • Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi:10.1021/es071445r

    Article  CAS  Google Scholar 

  • Furukawa K, Wang Y, Yao PJ, Fu W, Mattson MP, Itoyama Y, Onodera H, D’Souza I, Poorkaj PH, Bird TD, Schellenberg GD (2003) Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. J Neurochem 87:427–436. doi:10.1046/j.1471-4159.2003.02020.x

    Article  CAS  Google Scholar 

  • Ghule K, Ghule A, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041. doi:10.1039/B605623G

    Article  CAS  Google Scholar 

  • Green KN, Peers C (2002) Divergent pathways account for two distinct effects of amyloid β peptides on exocytosis and Ca2+ currents involvement of ROS and NF-κB. J Neurochem 81:1043–1051. doi:10.1046/j.1471-4159.2002.00907.x

    Article  CAS  Google Scholar 

  • Green KN, Boyle JP, Peers C (2002) Hypoxia potentiates exocytosis and Ca2+ channels in PC12 cells via increased amyloid beta peptide formation and reactive oxygen species generation. J Physiol 541:1013–1023. doi:10.1113/jphysiol.2002.017582

    Article  CAS  Google Scholar 

  • Han D, Tian Y, Zhang T, Ren G, Yang Z (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int J Nanomed 6:1453–1461. doi:10.2147/IJN.S18507

    CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316. doi:10.1016/j.chemosphere.2007.11.047

    Article  CAS  Google Scholar 

  • Jen J (1999) Calcium channelopathies in the central nervous system. Curr Opin Neurobiol 9:274–280. doi:10.1016/S0959-4388(99)80040-3

    Article  CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41:2699–2711. doi:10.1080/10934520600966177

    CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625. doi:10.1016/j.envpol.2008.12.025

    Article  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    CAS  Google Scholar 

  • Lin WS, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39. doi:10.1007/s11051-008-9419-7

    Article  CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12:635–641. doi:10.1080/10611860400015936

    Article  CAS  Google Scholar 

  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631–1637. doi:10.1289/ehp.10216

    Article  CAS  Google Scholar 

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330. doi:10.1897/08-262.1

    Article  CAS  Google Scholar 

  • Mattson MP (1996) Calcium and free radicals: mediators of neurotrophic factor and excitatory transmitter-regulated developmental plasticity and cell death. Perspect Dev Neurobiol 3:79–91

    CAS  Google Scholar 

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350. doi:10.1111/j.1474-9726.2007.00275.x

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi:10.1080/08958370490439597

    Article  CAS  Google Scholar 

  • Ohkuma S, Katsura M, Higo A, Shirotani K, Hara A, Tarumi C, Ohgi T (2001) Peroxynitrite affects Ca2+ influx through voltage-dependent calcium channels. J Neurochem 76:341–350. doi:10.1046/j.1471-4159.2001.00045.x

    Article  CAS  Google Scholar 

  • Peers C, Scragg JL, Boyle JP, Fearon IM, Taylor SC, Green KN, Webster NJ, Ramsden M, Pearson HA (2005) A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos Trans R Soc Lond B Biol Sci 360:2247–2254. doi:10.1098/rstb.2005.1761

    Article  CAS  Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023. doi:10.1063/1.2742324

    Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180. doi:10.1093/toxsci/kfm018

    Article  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418. doi:10.1023/A:1009616228304

    Article  CAS  Google Scholar 

  • Tam KH, Djurišić AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174. doi:10.1016/j.tsf.2007.11.081

    Article  CAS  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349:414–418

    Article  CAS  Google Scholar 

  • Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, Tator CH, Charlton MP (1993) Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11:221–235. doi:10.1016/0896-6273(93)90180-Y

    Article  CAS  Google Scholar 

  • Wagner JJ, Alger BE (1994) GTP modulates run-up of whole-cell Ca2+ channel current in a Ca2+-dependent manner. J Neurophysiol 71:814–816

    CAS  Google Scholar 

  • Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–1992. doi:10.1021/nn800631r

    Article  CAS  Google Scholar 

  • Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243. doi:10.1007/s12011-007-0028-6

    Article  CAS  Google Scholar 

  • Wang B, Feng WY, Wang M, Wang TC, Gu YQ, Zhu MT, Ouyang H, Shi JW, Zhang F, Zhao YL, Chai ZF, Wang HF, Wang J (2008a) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276. doi:10.1007/s11051-007-9245-3

    Article  CAS  Google Scholar 

  • Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, Li YF, Li B, Ge CC, Zhou GQ, Gao Y, Zhao YL, Chai ZF (2008b) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80. doi:10.1016/j.toxlet.2008.10.001

    Article  CAS  Google Scholar 

  • Wang JX, Liu Y, Jiao F, Lao F, Li W, Gu YQ, Li YF, Ge CC, Zhou GQ, Li B, Zhao YL, Chai ZF, Chen CY (2008c) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90. doi:10.1016/j.tox.2008.09.014

    Article  CAS  Google Scholar 

  • Wang B, Feng WY, Zhu MT, Wang Y, Wang M, Gu YQ, Ouyang H, Wang HJ, Li M, Zhao YL, Chai ZF, Wang HF (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53. doi:10.1007/s11051-008-9452-6

    Article  Google Scholar 

  • Weiss JH, Hartley DM, Koh J, Choi DW (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247:1474–1477

    Article  CAS  Google Scholar 

  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R (2009) Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356–1365. doi:10.1016/j.chemosphere.2009.06.025

    Article  CAS  Google Scholar 

  • Yamamoto O, Komatsu M, Sawai J, Nakagawa ZE (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Mater Med 15:847–851. doi:10.1023/B:JMSM.0000036271.35440.36

    Article  CAS  Google Scholar 

  • Yang Z, Liu ZW, Allaker R, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422. doi:10.1098/rsif.2010.0158.focus

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. doi:10.1007/s11051-006-9150-1

    Article  Google Scholar 

  • Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30:220–230. doi:10.1016/j.neuro.2008.12.005

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A 43:278–284. doi:10.1080/10934520701792779

    CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the National Natural Science Foundation of China (31070890) and the Tianjin Research Program of Application Foundation and Advanced Technology (10JCZDJC19100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Yang.

Additional information

Zhao Jingxia and Yao Yang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Yao, Y., Liu, S. et al. Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro. J Nanopart Res 14, 1238 (2012). https://doi.org/10.1007/s11051-012-1238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1238-1

Keywords

Navigation