Skip to main content
Log in

Preparation of surfactant-stabilized gold nanoparticle–peptide nucleic acid conjugates

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple, two-step method of producing stable and functional peptide nucleic acid (PNA)-conjugated gold nanoparticles using a surfactant stabilization step is presented. PNA are DNA analogs with superior chemical stability and target discrimination, but their use in metallic nanoparticle systems has been limited by the difficulty of producing stable colloids of nanoparticle–PNA conjugates. In this work, the nonionic surfactant Tween 20 (polyoxyethylene (20) sorbitan monolaurate) was used to sterically shield gold surfaces prior to the addition of thiolated PNA, producing conjugates which remain dispersed in solution and retain the ability to hybridize to complementary nucleic acid sequences. The conjugates were characterized using transmission electron microscopy, dynamic light scattering, and UV–visible absorbance spectroscopy. PNA attachment to gold nanoparticles was confirmed with an enzyme-linked immunoassay, while the ability of nanoparticle-bound PNA to hybridize to its complement was demonstrated using labeled DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MPJ, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    Article  CAS  PubMed  ADS  Google Scholar 

  • Armitage BA (2003) The impact of nucleic acid secondary structure on PNA hybridization. Drug Discovery Today 8:222–228

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Perez-Luna VH (2002) Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir 18:6059–6065

    Article  CAS  Google Scholar 

  • Chakrabarti R, Klibanov AM (2003) Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J Am Chem Soc 125:12531–12540

    Article  CAS  PubMed  Google Scholar 

  • Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  CAS  PubMed  Google Scholar 

  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchardt O, Sonnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  PubMed  Google Scholar 

  • Eck D, Helm CA, Wagner NJ, Vaynberg KA (2001) Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir 17:957–960

    Article  CAS  Google Scholar 

  • Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  • Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  ADS  Google Scholar 

  • Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid layers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  • Kushon SA, Jordan JP, Seifert JL, Nielsen H, Nielsen PE, Armitage BA (2001) Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. J Am Chem Soc 123:10805–10813

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  • Love JC, Estroff LA, Kreibel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  PubMed  Google Scholar 

  • Lytton-Jean AKR, Gibbs-Davis JM, Long H, Schatz GC, Mirkin CA, Nguyen ST (2009) Highly cooperative behavior of peptide nucleic acid-linked DNA-modified gold-nanoparticle and comb-polymer aggregates. Adv Mater 21:706–709

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Murphy D, Redmond G, de la Torre BG, Eritja R (2004) Hybridization and melting behavior of peptide nucleic acid (PNA) oligonucleotide chimeras conjugated to gold nanoparticles. Helv Chim Acta 87:2727–2734

    Article  CAS  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  ADS  Google Scholar 

  • Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29:5163–5168

    Article  CAS  PubMed  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, Machtle P, Eck D, Mohwald H, Helm CA (1999) Preparation and optical properties of colloidal gold monolayers. Langmuir 15:3256–3266

    Article  CAS  Google Scholar 

  • Williams B, Stender H, Coull JM (2002) PNA fluorescent in situ hybridization for rapid microbiology and cytogenetic analysis. In: Nielsen PE (ed) Methods in molecular biology. Humana Press Inc., Totowa, pp 181–194

    Google Scholar 

  • Xu J, Craig SL (2005) Thermodynamics of DNA hybridization on gold nanoparticles. J Am Chem Soc 127:13227–13231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Michael D. Mason and Dr. Paul Millard for sharing their resources and expertise. Support for this work has been generously provided by the Functional Genomics National Science Foundation-Integrative Graduate Education and Research Traineeship (NSF-IGERT) grant #0221625, National Oceanic and Atmospheric Administration (NOAA) Center for Sponsored Coastal Ocean Research (CSCOR) Monitoring and Event Response for Harmful Algal Blooms (MERHAB) program NA05NOS4781232, and the United States Department of Agriculture (USDA) Biosecurity award #2006-55605-16654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice Duy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duy, J., Connell, L.B., Eck, W. et al. Preparation of surfactant-stabilized gold nanoparticle–peptide nucleic acid conjugates. J Nanopart Res 12, 2363–2369 (2010). https://doi.org/10.1007/s11051-010-9996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9996-0

Keywords

Navigation