Skip to main content
Log in

Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic Hydrocarbons

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Black fungi reported as degraders of volatile aromatic compounds were isolated from hydrocarbon-polluted sites and indoor environments. Several of the species encountered are known opportunistic pathogens or are closely related to pathogenic species causing severe mycoses, among which are neurological infections in immunocompetent individuals. Given the scale of the problem of environmental pollution and the phylogenetic relation of aromate-degrading black fungi with pathogenic siblings, it is of great interest to select strains able to mineralize these substrates efficiently without any risk for public health. Fifty-six black strains were obtained from human-made environments rich in hydrocarbons (gasoline car tanks, washing machine soap dispensers) after enrichment with some phenolic intermediates of toluene and styrene fungal metabolism. Based on ITS sequencing identification, the majority of the obtained isolates were members of the genus Exophiala. Exophiala xenobiotica was found to be the dominant black yeast present in the car gasoline tanks. A higher biodiversity, with three Exophiala species, was found in soap dispensers of washing machines. Strains obtained were screened using a 2,6-dichlorophenol-indophenol (DCPIP) assay, optimized for black fungi, to assess their potential ability to degrade toluene. Seven out of twenty strains tested were able to use toluene as carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maliyekkal SM, Rene ER, Philip L, Swaminathan T. Performance of BTX degraders under substrate versatility conditions. J Hazard Mater. 2004;109:201–11.

    Article  PubMed  CAS  Google Scholar 

  2. Smith MR. The biodegradation of aromatic hydrocarbons by bacteria. Biodeg. 1990;1:191–206.

    Article  PubMed  CAS  Google Scholar 

  3. Chakraborty R, Coates JD. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotech. 2004;64:437–46.

    Article  CAS  Google Scholar 

  4. Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, Anke H, van Groenestijn JW, de Bont JAM. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res. 2001;105:477–84.

    Article  Google Scholar 

  5. Cox HHJ, Moerman RE, Van Baalen S, Van Heiningen WNM, Doddema HJ, Harder W. Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng. 1997;53:259–66.

    Article  PubMed  CAS  Google Scholar 

  6. Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW. Substrate Interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol. 2002;68:2660–5.

    Article  PubMed  Google Scholar 

  7. Badali H, Prenafeta-Boldu FX, Guarro J, Klaassen CH, Meis JF, de Hoog GS. Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol. 2011;115:1019–29.

    Article  PubMed  CAS  Google Scholar 

  8. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L. Evolution and adaptation of fungi at boundaries of life. Adv Space Res. 2007;40:1657–64.

    Article  Google Scholar 

  9. Zalar P, de Hoog GS, Gunde-Cimerman N. Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol. 1999;43:57–62.

    Google Scholar 

  10. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res. 2000;104:1421–6.

    Article  Google Scholar 

  11. Sterflinger K. Black Yeasts and meristematic fungi: ecology, diversity and identification. In: Seckbach J, editor. The Yeast handbook. Biodiversity and ecophysiology of yeasts. Berlin: Springer; 2005. p. 501–14.

    Google Scholar 

  12. Selbmann L, de Hoog GS, Gerrits van den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S. Drought meets acid: three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol. 2008;61:1–20.

    Article  PubMed  CAS  Google Scholar 

  13. Prenafeta-Boldú FX, Summerbell R, de Hoog GS. Fungi growing on aromatic hydrocarbons: biotechnology‘s unexpected encounter with biohazard? FEMS Microbiol Rev. 2006;30:109–30.

    Article  PubMed  Google Scholar 

  14. Lian X, de Hoog GS. Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol. 2010;48:622–8.

    Article  PubMed  CAS  Google Scholar 

  15. Nucci M, Akiti T, Barreiros G, Silveira F, Revankar SG, Wickes BL, Sutton DA, Patterson TF. Nosocomial outbreak of Exophiala jeanselmei fungemia associated with contamination of hospital water. Clin Infect Dis. 2002;34:1475–80.

    Article  PubMed  Google Scholar 

  16. Nishimura K, Miyaji M, Taguchi H, Tanaka R. Fungi in bathwater and sludge of bathroom drainpipes. I. Frequent isolation of Exophiala species. Mycopathologia. 1987;97:17–23.

    Article  PubMed  CAS  Google Scholar 

  17. Matos T, de Hoog GS, de Boer AG, Crom I, Haase G. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses. 2002;405:373–7.

    Article  Google Scholar 

  18. Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N. Dishwashers- a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol. 2011;115:997–1007.

    Article  PubMed  CAS  Google Scholar 

  19. Satow MM, Attili-Angelis D, de Hoog GS, Angelis DF, Vicente VA. Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol. 2008;61:157–63.

    Article  PubMed  CAS  Google Scholar 

  20. Vicente VA, Attili-Angelis D, Pie MR, Queiroz-Telles F, Cruz LM, Najafzadeh MJ, de Hoog GS, Zhao J, Pizzirani-Kleiner A. Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol. 2008;61:137–44.

    Article  PubMed  CAS  Google Scholar 

  21. Sudhadham M, Haase G, Prakitsin S, de Hoog GS. The neurotropic black yeast Exophiala dermatitidis has a possible origin of in the tropical rain forest. Stud Mycol. 2008;61:145–55.

    Article  PubMed  CAS  Google Scholar 

  22. Gezuele E, Mackinnon JE, Conti-Diaz IA. The frequent isolation of Phialophora verrucosa and Fonsecaea pedrosoi from natural sources. Sabouraudia. 1972;10:266–73.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao J, Zeng J, de Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX. Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol. 2010;60:149–56.

    Article  PubMed  CAS  Google Scholar 

  24. Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L. Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodet Biodeg. 2012;70:40–6.

    Article  CAS  Google Scholar 

  25. Hanson KG, Desai JD, Desai AJ. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Technol. 1993;7:745–8.

    Article  CAS  Google Scholar 

  26. de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousav S. Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia. 2011;27:46–72.

    Article  PubMed  Google Scholar 

  27. Ruibal C, Platas G, Bills GF. High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia. 2008;21:93–110.

    Article  PubMed  CAS  Google Scholar 

  28. Bouchez M, Blanchet D, Vandecasteele JP. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol. 1995;43:156–64.

    Article  PubMed  CAS  Google Scholar 

  29. de Hoog GS, Zeng JS, Harrak MJ, Sutton DA. Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Van Leeuwenhoek. 2006;90:257–68.

    Article  PubMed  Google Scholar 

  30. Ferrari MD, Neirotti E, Albornoz C. Occurrence of heterotrophic bacteria and fungi in an aviation fuel handling system and its relationship with fuel fouling. Rev Argent Microbiol. 1998;30:105–14.

    PubMed  CAS  Google Scholar 

  31. Hamada N, Abe N. Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience. 2009;50:421–9.

    Article  Google Scholar 

  32. Badali H, Najafzadeh MJ, Van Esbroeck M, van den Enden E, Tarazooie B, Meis JF, de Hoog GS. The clinical spectrum of Exophiala jeanselmei, with a case report and in vitro antifungal susceptibility of the species. Med Mycol. 2010;48:318–27.

    Article  PubMed  CAS  Google Scholar 

  33. Matos T, Haase G, Gerrits van den Ende AHG, de Hoog GS. Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. Antonie Van Leeuwenhoek. 2003;83:293–303.

    Article  PubMed  CAS  Google Scholar 

  34. Göttlich E, van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming HC, de Hoog GS. Fungal flora in ground-derived public drinking water. Int J Hyg Environ Health. 2002;205:269–79.

    Article  PubMed  Google Scholar 

  35. Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I. Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol. 2006;72:7586–93.

    Article  PubMed  CAS  Google Scholar 

  36. Bukley DA. Fragrance ingredients labeling in products on sale in the U.K. Brit. J Dermatol. 2007;157:295–300.

    Article  Google Scholar 

  37. Magnano M, Silvani S, Vincenzi C, Nino M, Tosti A. Contact allergens and irritants in household washing and cleaning products. Contact Dermatitis. 2009;61:337–41.

    Article  PubMed  CAS  Google Scholar 

  38. White JML, de Groot AC, White IR. Cosmetics and skin care products. Contact Dermatitis. 2011;6:591–605.

    Article  Google Scholar 

  39. de Leo F, Urzì C, de Hoog GS. Two Coniosporium species from rock surfaces. Stud Mycol. 1999;43:70–9.

    Google Scholar 

  40. Li DM, de Hoog GS, Lindhardt Saunte DM, Gerrits van den Ende AHG, Chen XR. Coniosporium epidermidis sp. nov., a new species from human skin. Stud Mycol. 2008;61:131–6.

    Article  PubMed  CAS  Google Scholar 

  41. Woertz R, Kinney KA, McIntosh NDP, Szaniszlo PJ. Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Biotech Bioeng. 2001;75:550–8.

    Article  CAS  Google Scholar 

  42. Estévez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotech. 2005;32:33–7.

    Article  Google Scholar 

  43. Prenafeta-Boldú FX, Guivernau M, Gallastegui G, Viñas M, de Hoog GS, Elías A. Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol. 2012;80:722–34.

    Article  PubMed  Google Scholar 

  44. Rustler S, Chmura A, Sheldon RA, Stolz A. Characterization of the substrate specifi city of the nitrile hydrolyzing system of the acidotolerant black yeast-Exophiala oligosperma R1. Stud Mycol. 2008;61:165–74.

    Article  PubMed  CAS  Google Scholar 

  45. de Hoog GS, Vicente V, Caligiorne RB, Kantarciogly S, Tintelnot K, Gerrits van der Ende AHG, Haase G. Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol. 2003;41:4767–78.

    Article  PubMed  Google Scholar 

  46. Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldú FX, de Hoog GS. Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzene and arsenic. Fungal Biol. 2011;115:1030–7.

    Article  PubMed  CAS  Google Scholar 

  47. Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol. 2012;116:932–40.

    Article  PubMed  CAS  Google Scholar 

  48. Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K. Sample preparation and 2-DE procedure for protein expression profiling of black microcolonial fungi. Fungal Biol. 2011;115:971–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Regione Lazio–Dipartimento Economico Occupazionale–Settore per lo Sviluppo, Ricerca, Innovazione e Turismo for co-financing a contract for a young researcher (CDTRDIR no C0345/18 February 2010) and wish to thank Prof Katja Sterflinger for providing strain MA 2853 from the Austrian Center of Biological Resources and Applied Mycology culture collection (ACBR, Vienna, Austria; http://www.biotec.boku.ac.at/acbr.htm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Isola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isola, D., Selbmann, L., de Hoog, G.S. et al. Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic Hydrocarbons. Mycopathologia 175, 369–379 (2013). https://doi.org/10.1007/s11046-013-9635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-013-9635-2

Keywords

Navigation