Skip to main content
Log in

A patient-specific multibody kinematic model for representation of the scoliotic spine movement in frontal plane of the human body

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Multibody models of scoliotic spine have shown great promise in planning scoliosis surgery by providing predictive information concerning the surgery outcome. To provide good predictive information, it is important that the kinematic models underlying the movement of the spine models would be personalized to give good estimates of the spine in different positions, which is lacking in the existing literature. This paper aims to develop a patient-specific multibody kinematic model of the scoliotic spine to represent its movement in frontal plane of the human body. The model is an open-chain mechanism comprising rigid links interconnected with rotary joints. To represent the movement, the mechanism lays on the spine curve and estimates the curve and the location and orientation of vertebrae. To personalize the mechanism for a patient, a minimization problem is defined to give the number of the links and their length by using X-rays of different spine positions. The feasibility and capabilities of our patient-specific model are tested by using the data from preoperative X-rays of five positions of 10 AIS (adolescent idiopathic scoliosis) patients; three of the X-rays are routine in scoliosis standard care. The mechanism is personalized to each patient by using the three routine X-rays, and it is used to estimate all the five positions. Root-mean-square-errors (RMSE) of the curve, location, and orientation are 2e–5 mm, 0.27 mm, and 0.25°, respectively. The small RMSEs imply that our kinematic model is capable of estimating the scoliotic spine positions in the frontal plane and thus of describing the scoliotic spine movement in this plane. Our personalization using X-rays of three spine positions helps to set better values for the kinematic parameters (such as the length of the links) for more accurate estimates of the spine in the frontal plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The examples are based on the measurements done on the X-rays of the scoliotic patients included in this study. The measurements and their accuracy and reliability are explained in Sect. 5.1.

  2. The inflection vertebra is where the spine curve changes the direction from convex to concave and vice versa [38].

  3. The vertebrae that define the ends of the spine curve in the frontal or sagittal planes [38].

References

  1. Duke, K., Aubin, C.-E., Dansereau, J., Labelle, H.: Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin. Biomech. 20(9), 923–931 (2005)

    Article  Google Scholar 

  2. De Oliveira, M.E., Hasler, C.-C., Zheng, G., Studer, D., Schneider, J., Büchler, P.: A multi-criteria decision support for optimal instrumentation in scoliosis spine surgery. Struct. Multidiscip. Optim. 45(6), 917–929 (2012)

    Article  Google Scholar 

  3. Aubin, C.E., Labelle, H., Chevrefils, C., Desroches, G., Clin, J., Eng, A.B.M.: Preoperative planning simulator for spinal deformity surgeries. Spine 33(20), 2143–2152 (2008)

    Article  Google Scholar 

  4. Jalalian, A., Tay, F.E.H., Arastehfar, S., Liu, G.: A new method to approximate load–displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine. Med. Biol. Eng. Comput. (2016). doi:10.1007/s11517-016-1576-8

    Google Scholar 

  5. Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform. 1(6), 401–411 (2013). doi:10.1016/j.jspd.2013.07.009

    Article  Google Scholar 

  6. Panjabi, M.M.: Three-dimensional mathematical model of the human spine structure. J. Biomech. 6(6), 671–680 (1973). doi:10.1016/0021-9290(73)90023-7

    Article  Google Scholar 

  7. Udoekwere, U.I., Krzak, J.J., Graf, A., Hassani, S., Tarima, S., Riordan, M., Sturm, P.F., Hammerberg, K.W., Gupta, P., Anissipour, A.K.: Effect of lowest instrumented vertebra on trunk mobility in patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion. Spine Deform. 2(4), 291–300 (2014)

    Article  Google Scholar 

  8. Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1–2) 19–34 (2012)

    Article  Google Scholar 

  9. White, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine, vol. 2. Lippincott, Philadelphia (1990)

    Google Scholar 

  10. Ishikawa, Y., Shimada, Y., Iwami, T., Kamada, K., Matsunaga, T., Misawa, A., Aizawa, T., Itoi, E.: Model simulation for restoration of trunk in complete paraplegia by functional electrical stimulation. In: Proceedings of IFESS05 Conference, Montreal, Canada (2005)

    Google Scholar 

  11. Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25(2), 245–270 (2011)

    Article  Google Scholar 

  12. Daggfeldt, K., Thorstensson, A.: The role of intra-abdominal pressure in spinal unloading. J. Biomech. 30(11), 1149–1155 (1997)

    Article  Google Scholar 

  13. Stokes, I.A., Gardner-Morse, M.: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J. Biomech. 28(2), 173–186 (1995)

    Article  Google Scholar 

  14. Huynh, K., Gibson, I., Jagdish, B., Lu, W.: Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation. Comput. Methods Biomech. Biomed. Eng. 18(2), 175–184 (2015)

    Article  Google Scholar 

  15. De Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2007)

    Article  Google Scholar 

  16. Petit, Y., Aubin, C.-E., Labelle, H.: Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. J. Biomech. 37(2), 173–180 (2004)

    Article  Google Scholar 

  17. Christophy, M., Curtin, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: On the modeling of the intervertebral joint in multibody models for the spine. Multibody Syst. Dyn. 30(4), 413–432 (2013)

    Article  MathSciNet  Google Scholar 

  18. Panjabi, M.M., Brand, R.A. Jr, White, A.A. III: Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 9(4), 185–192 (1976)

    Article  Google Scholar 

  19. Stokes, I.A., Gardner-Morse, M., Churchill, D., Laible, J.P.: Measurement of a spinal motion segment stiffness matrix. J. Biomech. 35(4), 517–521 (2002)

    Article  Google Scholar 

  20. Aubin, C.-E., Petit, Y., Stokes, I., Poulin, F., Gardner-Morse, M., Labelle, H.: Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput. Methods Biomech. Biomed. Eng. 6(1), 27–32 (2003)

    Article  Google Scholar 

  21. Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 14(06), 527–537 (2011)

    Article  Google Scholar 

  22. Gardner-Morse, M., Stokes, I.A.: Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel–Dubousset instrumentation. J. Biomech. 27(2), 177–181 (1994)

    Article  Google Scholar 

  23. Petit, Y., Aubin, C., Labelle, H.: Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med. Biol. Eng. Comput. 42(1), 55–60 (2004)

    Article  Google Scholar 

  24. Desroches, G., Aubin, C.-E., Sucato, D.J., Rivard, C.-H.: Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med. Biol. Eng. Comput. 45(8), 759–768 (2007)

    Article  Google Scholar 

  25. Abedrabbo, G., Fisette, P., Absil, P.-A., Mahaudens, P., Detrembleur, C., Raison, M., Banse, X., Aubin, C.-E., Mousny, M.: A multibody-based approach to the computation of spine intervertebral motions in scoliotic patients. Stud. Health Technol. Inform. 176, 95–98 (2011)

    Google Scholar 

  26. Raison, M., Aubin, C-É., Detrembleur, C., Fisette, P., Mahaudens, P., Samin, J.-C.: Quantification of global intervertebral torques during gait: comparison between two subjects with different scoliosis severities. Stud. Health Technol. Inform. 158, 107–111 (2009)

    Google Scholar 

  27. Perret, C., Poiraudeau, S., Fermanian, J., Revel, M.: Pelvic mobility when bending forward in standing position: validity and reliability of 2 motion analysis devices. Arch. Phys. Med. Rehabil. 82(2), 221–226 (2001)

    Article  Google Scholar 

  28. Wong, K.W., Leong, J.C., Chan, M-k., Luk, K.D., Lu, W.W.: The flexion–extension profile of lumbar spine in 100 healthy volunteers. Spine 29(15), 1636–1641 (2004)

    Article  Google Scholar 

  29. Hresko, M.T., Mesiha, M., Richards, K., Zurakowski, D.: A comparison of methods for measuring spinal motion in female patients with adolescent idiopathic scoliosis. J. Pediatr. Orthop. 26(6), 758–763 (2006)

    Article  Google Scholar 

  30. Amendt, L.E., Ause-Ellias, K.L., Eybers, J.L., Wadsworth, C.T., Nielsen, D.H., Weinstein, S.L.: Validity and reliability testing of the Scoliometer®. Phys. Ther. 70(2), 108–117 (1990)

    Google Scholar 

  31. Mior, S.A., Kopansky-Giles, D.R., Crowther, E.R., Wright, J.G.: A comparison of radiographic and electrogoniometric angles in adolescent idiopathic scoliosis. Spine 21(13), 1549–1555 (1996)

    Article  Google Scholar 

  32. Saur, P.M., Ensink, F.-B.M., Frese, K., Seeger, D., Hildebrandt, J.: Lumbar range of motion: reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility. Spine 21(11), 1332–1338 (1996)

    Article  Google Scholar 

  33. Tousignant, M., Duclos, E., Laflèche, S., Mayer, A., Tousignant-Laflamme, Y., Brosseau, L., O’Sullivan, J.P.: Validity study for the cervical range of motion device used for lateral flexion in patients with neck pain. Spine 27(8), 812–817 (2002)

    Article  Google Scholar 

  34. Reamy, B.V., Slakey, J.B.: Adolescent idiopathic scoliosis: review and current concepts. Am. Fam. Phys. 64(1), 111–116 (2001)

    Google Scholar 

  35. Lonstein, J.: Adolescent idiopathic scoliosis. Lancet 344(8934), 1407–1412 (1994)

    Article  Google Scholar 

  36. Tan, K.-J., Moe, M.M., Vaithinathan, R., Wong, H.-K.: Curve progression in idiopathic scoliosis: follow-up study to skeletal maturity. Spine 34(7), 697–700 (2009)

    Article  Google Scholar 

  37. Cobb, J.: Outline for the study of scoliosis. Instr. Course Lect. 5, 261–275 (1948)

    Google Scholar 

  38. Lenke, L.: SRS Terminology Committee and Working Group on Spinal Classification Revised Glossary of Terms (2000). http://www.srs.org/professionals/glossary/SRS_revised_glossary_of_terms.htm. Accessed 21 July 2015

  39. O’Brien, M.F., Kuklo, T.R., Blanke, K.M., Lenke, L.G.: Spinal Deformity Study Group Radiographic Measurement Manual. Medtronic Sofamor Danek, Memphis (2004)

    Google Scholar 

  40. Stokes, I.: Three-dimensional terminology of spinal deformity (1994). http://www.srs.org/professionals/glossary/SRS_3D_terminology.htm. Accessed 21 July 2015

  41. Labelle, H., Aubin, C.-E., Jackson, R., Lenke, L., Newton, P., Parent, S.: Seeing the spine in 3D: how will it change what we do? J. Pediatr. Orthop. 31, S37–S45 (2011)

    Article  Google Scholar 

  42. Bridwell, K.H., DeWald, R.L.: The Textbook of Spinal Surgery. Wolters Kluwer Health, New York (2012)

    Google Scholar 

  43. King, H.A., Moe, J.H., Bradford, D.S., Winter, R.B.: The selection of fusion levels in thoracic idiopathic scoliosis. J. Bone Jt. Surg., Am. Vol. 65(9), 1302–1313 (1983)

    Article  Google Scholar 

  44. Cheh, G., Lenke, L.G., Lehman, R.A. Jr, Kim, Y.J., Nunley, R., Bridwell, K.H.: The reliability of preoperative supine radiographs to predict the amount of curve flexibility in adolescent idiopathic scoliosis. Spine 32(24), 2668–2672 (2007)

    Article  Google Scholar 

  45. Cheung, K., Luk, K.: Prediction of correction of scoliosis with use of the fulcrum bending radiograph. J. Bone Jt. Surg. 79(8), 1144–1150 (1997)

    Article  Google Scholar 

  46. Polly, D.W. Jr, Sturm, P.F.: Traction versus supine side bending: which technique best determines curve flexibility? Spine 23(7), 804–808 (1998)

    Article  Google Scholar 

  47. Vedantam, R., Lenke, L.G., Bridwell, K.H., Linville, D.L.: Comparison of push-prone and lateral-bending radiographs for predicting postoperative coronal alignment in thoracolumbar and lumbar scoliotic curves. Spine 25(1), 76 (2000)

    Article  Google Scholar 

  48. Jeffries, B., Tarlton, M., De Smet, A.A., Dwyer, S. 3rd, Brower, A.C.: Computerized measurement and analysis of scoliosis: a more accurate representation of the shape of the curve. Radiology 134(2), 381–385 (1980)

    Article  Google Scholar 

  49. Koreska, J., Smith, J.: Portable desktop computer-aided digitiser system for the analysis of spinal deformities. Med. Biol. Eng. Comput. 20(6), 715–726 (1982)

    Article  Google Scholar 

  50. Denavit, J.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  51. Colton, T.: Statistics in Medicine, vol. 164. Little, Brown, Boston (1974)

    Google Scholar 

  52. Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

    Google Scholar 

  53. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stokes, I.A., Bigalow, L.C., Moreland, M.S.: Three-dimensional spinal curvature in idiopathic scoliosis. J. Orthop. Res. 5(1), 102–113 (1987)

    Article  Google Scholar 

  55. Oxland, T.R., Lin, R.M., Panjabi, M.M.: Three-dimensional mechanical properties of the thoracolumbar junction. J. Orthop. Res. 10(4), 573–580 (1992)

    Article  Google Scholar 

  56. Jalalian, A., Tay, F.E.H., Arastehfar, S., Gibson, I., Liu, G.: Finding line of action of the force exerted on erect spine based on lateral bending test in personalization of scoliotic spine models. Med. Biol. Eng. Comput. (2016). doi10.1007/s11517-016-1550-5

    Google Scholar 

  57. Jalalian, A., Tay, F.E.H., Liu, G.: A hypothesis about line of action of the force exerted on spine based on lateral bending test in personalized scoliotic spine models. In: The Canadian Society for Mechanical Engineering International Congress, Kelowna, BC, Canada, June 26–29 (2016)

    Google Scholar 

  58. Lenke, L.G., Betz, R.R., Harms, J., Bridwell, K.H., Clements, D.H., Lowe, T.G., Blanke, K.: Adolescent idiopathic scoliosis a new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. 83(8), 1169–1181 (2001)

    Article  Google Scholar 

  59. Jalalian, A., Tay, F.E.H., Liu, G.: Data mining in medicine: relationship of scoliotic spine curvature to the movement sequence of lateral bending positions. In: 15th Industrial Conference on Data Mining ICDM 2016, New York, USA, 12–14 July (2016). doi:10.1007/978-3-319-41561-1_3

    Google Scholar 

  60. Sponseller, P.D., Flynn, J.M., Newton, P.O., Marks, M.C., Bastrom, T.P., Petcharaporn, M., McElroy, M.J., Lonner, B.S., Betz, R.R., Group, H.S.: The association of patient characteristics and spinal curve parameters with Lenke classification types. Spine 37(13), 1138–1141 (2012)

    Article  Google Scholar 

  61. Boissonnat, J.-D., Teillaud, M.: Effective Computational Geometry for Curves and Surfaces, 1st edn. Mathematics and Visualization. Springer, Berlin, Heidelberg (2006)

    Book  MATH  Google Scholar 

  62. Sharpe, R.J., Thorne, R.W.: Numerical method for extracting an arc length parameterization from parametric curves. Comput. Aided Des. 14(2), 79–81 (1982). doi:10.1016/0010-4485(82)90171-3

    Article  Google Scholar 

  63. Acharya, B., Acharya, M., Sahoo, S.: Numerical rectification of curves. Appl. Math. Sci. 8(17), 823–828 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athena Jalalian.

Appendix

Appendix

A 2D curve (\(y=f (z)\)) can be approximated by a polygonal chain (a piecewise linear curve or polyline [61]. The chain is obtained by connecting a finite number of points on the curve using line segments. The points (\(z,y\)) can be defined by segmentation of the \(z\)-axis, for example, \(z_{0}\), \(z_{0} +t\), \(z_{0} +2t, \ldots ,\mbox{ and }t\) is a real number and positive (Fig. 12a). Alternatively, the points can be specified by parameterization of the curve [62]. The parameterization by equal-length line segments (Fig. 12b) can be given by

$$ ( z_{i} - z_{i-1} ) ^{2} + ( y_{i} - y_{i-1} ) ^{2} = L_{\mathrm{seg}}^{2},\quad i=1,2,\dots ,n, $$
(A.1)

where \(L_{\mathrm{seg}}\) is the length of the lines, and \(n\) is the total number of the lines.

Fig. 12
figure 12

Approximation of a curve by using polygonal chains, (a) segmentation on the \(z\)-axis and (b) parameterization by equal-length line segments

Rectification gives the length (\(L\)) of a curve by adding up the length of the line segments [63]. For example, for the parameterized curve in Fig. 12b, the length (\(L\)) of the curve is \(n \cdot L_{\mathrm{seg}}\). Indeed, the rectification gives a good approximation of the curve length if \(L_{\mathrm{seg}}\) is sufficiently small. Thus, the parameterization of two curves of equal length (i.e. \(L_{1} =L_{2}\)) can result in the same number of the equal-length line segments (i.e. \(n_{1} =n_{2} \rightarrow L_{1} =n_{1} \cdot L_{\mathrm{seg}} = L_{2} =n_{2} \cdot L_{\mathrm{seg}}\)) if \(L_{\mathrm{seg}}\) is sufficiently small.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalian, A., Tay, F.E.H., Arastehfar, S. et al. A patient-specific multibody kinematic model for representation of the scoliotic spine movement in frontal plane of the human body. Multibody Syst Dyn 39, 197–220 (2017). https://doi.org/10.1007/s11044-016-9556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9556-1

Keywords

Navigation