Skip to main content
Log in

Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Apparent amylose content (AAC), gel consistency (GC), and gelatinization temperature (GT) are recognized as the most important determinants of rice eating and cooking qualities. The contributions of major starch-synthesis genes to these three traits have been investigated in the three consecutive experiments. In an initial QTL mapping with 130 doubled haploid (DH) lines, derived from an inter-subspecific cross of ‘Nanjing11’/‘Balilla’, the major QTLs responsible for AAC, GC, and GT coincided with the Wx (granule-bound starch synthase gene), Wx, and Sss IIa (soluble starch synthase gene) loci, respectively. In the second experiment, contributions of the major starch-synthesis genes to AAC, GC, and GT variations were estimated by using a multiple linear regression analysis. As shown, the Wx locus was a principal determinant for both AAC and GC, and could account for 58.5% and 38.9% of the phenotypic variations, respectively; while the Sss IIa locus was associated with GT, and could explain 25.5% of the observed variation. Eventually, a F2 population consisting of 501 individuals, derived from an inter-subspecific cross of the two sticky rice varieties ‘Suyunuo’ and ‘Yangfunuo 4’, was examined with gene-tagged markers. In the absence of the Wx gene, none of the starch-synthesis genes investigated could dominate the GC variation, however, the Sss IIa locus could also explain 25.1% of the GT variation. In summary, the Wx locus dominates the AAC variation, and meanwhile plays a major role in the GC variation. The Sss IIa locus is a major factor in explaining the GT variation. Apart from the major genes, other genetic factors may also contribute to the GC/GT variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Baba T, Nishihara M, Mizuno K, Kawasaki T, Shimada H, Kobayashi E, Ohnishi S, Tanaka K, Arai Y (1993) Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol 103:565–573

    Article  PubMed  CAS  Google Scholar 

  • Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J (1996) From glycogen to amylopectin: a model explaining the biogenesis of the plant starch granule. Cell 86:349–352

    Article  PubMed  CAS  Google Scholar 

  • Bao JS, Xia YW (1999) Genetic control of the paste viscosity characteristics in indica rice (Oryza sativa L.). Theor Appl Genet 98:1120–1124

    Article  Google Scholar 

  • Bao JS, Zheng XW, Xia YW, He P, Shu QY, Lu X, Chen Y, Zhu LH (2000a) QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet 100:280–284

    Article  CAS  Google Scholar 

  • Bao JS, He P, Li SG, Xia YW, Chen Y, Zhu LH (2000b). Comparative mapping quantitative trait loci controlling the cooking and eating quality of rice (Oryza sativa L.). Scientia Agricultura Sinica 33:8–13

    Google Scholar 

  • Bao JS, Wu YR, Hu B, Wu P, Cui HR, Shu QY (2002) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylase content. Euphytica 128:317–324

    Article  CAS  Google Scholar 

  • Blakeney AB (1996) Rice. In: Henry RJ, Kettlewell PS (eds) Cereal grain quality. Chapman & Hall, London, pp 55–76

    Google Scholar 

  • Bligh HFJ, Till RI, Jones CA (1995) A microsatellite sequence closely linked to the wx gene of Oryza sativa. Euphytica 86:83–85

    Article  CAS  Google Scholar 

  • Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu YH, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38:407–415

    Article  PubMed  CAS  Google Scholar 

  • Cagampang GB, Perez CM, Juliano BO (1973) A gel consistency test for the eating quality of rice. J Sci Food Agric 24:1589–1594

    PubMed  CAS  Google Scholar 

  • Cai XL, Wang ZY, Xing Y, Zhang JL, Hong MM (1998) Aberrant splicing of intron leads to the heterogeneous 5′UTR and decreased expression of the waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Clarke B, Hylton C, Tatge H, Smith AM (1996) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10:1135–1143

    Article  CAS  Google Scholar 

  • Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylase synthesis. J Plant Physiol 158:479–487

    Article  CAS  Google Scholar 

  • Dian WM, Jiang HW, Chen QS, Liu FY, Wu P (2003) Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218:261–268

    Article  PubMed  CAS  Google Scholar 

  • Erlander S (1958) Proposed mechanism for the synthesis of starch by glycogen. Enyzymologia 19:273–283

    CAS  Google Scholar 

  • Francisco PB, Zhang Y, Park S, Ogata N, Yamanouchi H, Nakamura Y (1998) Genomic DNA sequence of a rice gene coding for a pullulanase-type of starch debranching enzyme. Biochim Biophys Acta 1387:469–577

    PubMed  CAS  Google Scholar 

  • Fujita N, Kubo A, Francisco PB, Nakakita M, Harada K, Minaka N, Nakamura Y (1999) Purification, characterization, and cDNA structure of isoamylase from developing endosperm of rice. Planta 208:283–293

    Article  PubMed  CAS  Google Scholar 

  • Gao ZY, Zeng DL, Cui X, Zhou YH, Yan MX, Huang DN, Li JY, Qian Q (2003) Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China (Series C) 46:661–668

    Article  CAS  Google Scholar 

  • Gidley MJ, Bulpin PV (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr Res 161:291–300

    Article  CAS  Google Scholar 

  • He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508

    Article  CAS  Google Scholar 

  • Huang FS, Sun ZX, Hu PS, Tang SQ (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol Breeding 4:165–172

    Article  Google Scholar 

  • Isshiki M, Morino K, Nakajima M, Okagaki RO, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the waxy locus has a GT to TT mutation at the 5′splice site of the first intron. Plant J 15:133–138

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Nakajima M, Satoh H, Shimamoto K (2000) dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J 23:451–460

    Article  PubMed  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:1–8

    Article  CAS  Google Scholar 

  • Jenkins PJ, Cameron RE, Donald AM (1993) A universal feature in the structure of starch granules from different botanical source. Starch 45:417–420

    CAS  Google Scholar 

  • Jiang HW, Dian WM, Liu FY, Wu P (2004) Molecular cloning and expression analysis of three genes encoding starch synthase II in rice. Planta 218:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Juliano BO (1985) Criteria and tests for rice grain quality. In: Juliano BO (ed). Rice chemistry and technology. America Association of Cereal Chemists, Incorporated, Saint Paul, Minnesota, USA, pp 443–513

    Google Scholar 

  • Lanceras JC, Hun ZL, Naivikul Q, Vanavichit A, Ruanjaichon V, Tragoonrung S (2000) Mapping of genes for cooking and eating qualities in Thai Jasmine rice (KDML105). DNA Res 7:93–101

    Article  PubMed  CAS  Google Scholar 

  • Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkalia on 25 varieties of milled white rice. Cereal Chem 35:111–126

    CAS  Google Scholar 

  • Liu XY, Gu MH, Han YP, Ji Q, Lu JF, Gu SL, Zhang R, Li X, Chen JM, Korban SS, Xu ML (2004) Developing gene-tagged molecular markers for functional analysis of starch-synthesizing genes in rice (Oryza sativa L.). Euphytica 135:345–353

    Article  CAS  Google Scholar 

  • McKenzie KS, Rutger JN (1983) Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice. Crop Sci 23:306–311

    Article  CAS  Google Scholar 

  • Mikami I, Aikawa M, Hirano HY, Sano Y (1999) Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica 105:91–97

    Article  CAS  Google Scholar 

  • Mikami L, Dung LV, Hirano HY, Sano Y (2000) Effects of the two most common Wx alleles on different genetic background in rice. Plant Breed. 119:505–508

    Article  CAS  Google Scholar 

  • Mizuno K, Kawasaki T, Shimada H, Satoh H, Kobayashi E, Okumura S, Arai Y, Baba T (1993) Alteration of the structural properties of starch component by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem 286:19084–19091

    Google Scholar 

  • Mizuno K, Kobayashi E, Tachibana M, Kawasaki T, Fujimura T, Funane K, Kobayashi M, Baba T (2001) Characterization of an isoform of rice starch branching enzyme, RBEIV, in developing seeds. Plant Cell Physiol 42:349–357

    Article  PubMed  CAS  Google Scholar 

  • Moates GK, Noel TR, Parker R, Ring SG (1997) The effect of chain length and solvent interactions on the dissolution of the B-type crystalline polymorph of amylose in water. Carbohydr Res 298:327–333

    Article  CAS  Google Scholar 

  • Myers AM, Morell MK, James MG, Bill SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989–998

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Umemoto T, Takahata Y, Amano E (1992) Characteristics and roles of key enzymes associated with starch biosynthesis in rice endosperm. Gamma Fiele Symp 31:25–44

    Google Scholar 

  • Nakamura Y (1996) Some properties of starch debranching enzymes and their possible roles in amylopectin biosynthesis. Plant Sci 121:1–18

    Article  CAS  Google Scholar 

  • Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43:718–725

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O (1998) Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr Polym 37:153– 158

    Article  CAS  Google Scholar 

  • Patrick DL, Anna MM, Ayres NM, Park WD (2003). The effect of the waxy locus on pasting curve characteristics in specialty rice. Euphytica 131:243–253

    Article  Google Scholar 

  • Safford R, Jobling SA, Sidebottom CM, Westcott RJ, Cooke D, Tober KJ, Strongitharm BH, Russel AL, Gidley MJ (1998) Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydr Polym 35:155–168

    Article  CAS  Google Scholar 

  • Sano Y, Katsumata M, Omura K (1986) Genetic studies of speciation in cultivated rice. Inter and intraspecific differentiation in the waxy gene expression of rice. Euphytica 35:1–9

    Article  Google Scholar 

  • SAS Institute Inc (2000). SAS/STAT User’s Guide. Cary, NC USA

    Google Scholar 

  • Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50:225–230

    CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  PubMed  CAS  Google Scholar 

  • Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang QF (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet 99:642–648

    Article  CAS  Google Scholar 

  • Tan YF, Zhang QF (2001) Correlation of simple sequence repeat (SSR) variants in the leader sequence of the wx gene with amylose content of the grain in rice. Acta botanica sinica 43:146–150

    CAS  Google Scholar 

  • Tanaka K, Ohnishi S, Kishimoto N, Kawasaki T, Baba T (1995) Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant Physiol 108:677–683

    Article  PubMed  CAS  Google Scholar 

  • Tian R, Jiang GH, Shen LH, Wang LQ, He YQ (2004) Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breeding 15:117–124

    Article  CAS  Google Scholar 

  • Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y (2002) Mapping of a gene responsible for the difference in rice varieties. Theor Appl Genet 104:1–8

    Article  PubMed  CAS  Google Scholar 

  • Unnevehr LJ, Duff B, Juliano BO (1992) Consumer demand for rice grain quality. International Rice Research Institue, Manila, The Philippines and International Development Research Center, Ottawa, Canada

    Google Scholar 

  • Van de Wal M, D’Hulst C, Vincken JP, Buleon A, Visser R, Ball S (1998) Amylose is synthesized in vitro by extension of and cleavage from amylopectin. J Biol Chem 273:22232–22240

    Article  PubMed  Google Scholar 

  • Wang ZY, Zhang FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, Hong MM (1995) The amylase content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  PubMed  CAS  Google Scholar 

  • Webb BD (1980) Rice quality and grades. In: Luh BS (ed). Rice: production and utilization, Avi Publication Company. Incorporated. Westport, Connecticut USA, pp 543–565

    Google Scholar 

  • Williams VR, Wu WT, Tsai HY, Bates HG (1958) Varietal differences in amylose content of rice starch. J Agric Food Chem 6:47–48

    Article  CAS  Google Scholar 

  • Zeeman SC, Umemoto T, Lue WL, Yeung PA, Martin C, Smith AM, Chen J (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10:1699–1712

    Article  PubMed  CAS  Google Scholar 

  • Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted election. Theor Appl Genet 106:326–331

    PubMed  CAS  Google Scholar 

  • Zhou ZK, Robards K, Helliwell S, Blanchard C (2002) Composition and functional properties of rice. Int J of Food Sci Tech 37:849–868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Han, Y., Jiang, L. et al. Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol Breeding 18, 277–290 (2006). https://doi.org/10.1007/s11032-006-5505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-5505-7

Keywords

Navigation