Skip to main content
Log in

Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data

Marine Geophysical Research Aims and scope Submit manuscript

Abstract

We present new major element, ICP-MS trace element, and Sr–Nd–Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52–9.51 wt% MgO, 49.40–50.60 wt% SiO2, 0.09–0.27 wt% K2O, 2.55–2.90 wt% Na2O, and 0.60–0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55–0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3–4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9–10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the oceanic mantle which would significantly influence the isotopic anomaly of the Indian Ocean MORB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data sources Pelagic sediments: Othman et al. (1989); DM: Hart (1984); HIMU, EM1 and EM2: Armienti and Gasperini (2007); LCC: Escrig et al. (2004); UCC: Hemming and McLennan (2001); CR: as shown in Table 2; the Gulf of Aden: Schilling et al. (1992); NCIR: Ito et al. (1987), Mahoney et al. (1989), Escrig et al. (2004), and Ray et al. (2014); SCIR: Mahoney et al. (1989), Rehkämper and Hofmann (1997), Escrig et al. (2004), and Nauret et al. (2006); RTJ: Michard et al. (1986), Price et al. (1986), and Ito et al. (1987). Additional data are from PetDB

Fig. 6

Data sources are as in Fig. 4

Fig. 7

Data sources are as in Fig. 4

References

  • Armienti P, Gasperini D (2007) Do we really need mantle components to define mantle composition? J Petrol 48(4):693–709

    Article  Google Scholar 

  • Banerjee R, Iyer SD (1991) Petrography and chemistry of basalts from the Carlsberg Ridge. J Geol Soc India 38:369–386

    Google Scholar 

  • Cann JR (1969) Spilites from the Carlsberg Ridge, Indian Ocean. J Petrol 10(1):1–19

    Article  Google Scholar 

  • Cannat M, Sauter D, Bezos A, Meyzen C, Humler E, Le Rigoleur M (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem Geophys Geosyst 9(4). doi:10.1029/2007GC001676

  • Chaubey AK, Bhattacharya GC, Murty GPS, Desa M (1993) Spreading history of the Arabian Sea: some new constraints. Mar Geol 112:343–352. doi:10.1016/0025-3227(93)90178-X

    Article  Google Scholar 

  • Cohen RS, O’Nions RK (1982) The lead, neodymium and strontium isotopic structure of ocean ridge basalts. J Petrol 23(3):299–324

    Article  Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1–28

    Article  Google Scholar 

  • Dunn RA, Forsyth DW (2007) Crust and lithospheric structure—seismic structure of mid-ocean ridges. Treatise Geophys 1(12):419–443

    Google Scholar 

  • Dupré B, Allègre CJ (1983) Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303:142–146. doi:10.1038/303142a0

    Article  Google Scholar 

  • Dyment J, Hémond C, Guillou H, Maia M, Briais A, Gente P (2001) Central Indian Ridge and Réunion hot spot in Rodrigues area: another type of ridge–hot spot interaction? Eos Transactions AGU 82:47. Fall Meeting Supplementary T31D-05

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophys Res Solid Earth (1978–2012) 97(B6):9015–9025

    Article  Google Scholar 

  • Escrig S, Capmas F, Dupré B, Allegre CJ (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431(7004):59–63. doi:10.1038/nature02904

    Article  Google Scholar 

  • Füri E, Hilton DR, Murton BJ, Hémond C, Dyment J, Day JMD (2011) Helium isotope variations between Réunion Island and the Central Indian Ridge (17°–21°S): new evidence for ridge–hot spot interaction. J Geophys Res 116:1–17

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518. doi:10.1029/2012GC004334

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hekinian R (1968) Rocks from the mid-oceanic ridge in the Indian Ocean. Deep Sea Res Oceanogr Abstr 15(2):195–198

    Article  Google Scholar 

  • Hemming SR, McLennan SM (2001) Pb isotope compositions of modern deep sea turbidites. Earth Planet Sci Lett 184(2):489–503

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem 2:61–101

    Google Scholar 

  • Humler E, Whitechurch H (1988) Petrology of basalts from the Central Indian Ridge (lat. 25°23′S, long. 70°04′E): estimates of frequencies and fractional volumes of magma injections in a two-layered reservoir. Earth Planet Sci Lett 88:169–181. doi:10.1016/0012-821X(88)90055-6

    Article  Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176. doi:10.1016/0009-2541(87)90083-0

    Article  Google Scholar 

  • Janney PE, Le Roex AP, Carlson RW (2005) Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13 E to 47 E). J Petrol 46(12):2427–2464

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13(2). doi:10.1029/2011GC004009

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth (1978–2012) 92(B8):8089–8115

    Article  Google Scholar 

  • Liu CZ, Snow JE, Hellebrand E, Brügmann G, von der Handt A, Büchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452(7185):311–316

    Article  Google Scholar 

  • Mahoney JJ, Natland JH, White WM, Poreda R, Bloomer SH, Fisher RL, Baxter AN (1989) Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J Geophys Res Solid Earth (1978–2012) 94(B4):4033–4052

    Article  Google Scholar 

  • Mahoney J, Le Roex AP, Peng Z, Fisher RL, Natland JH (1992) Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°–50°E). J Geophys Res Solid Earth (1978–2012) 97(B13):19771–19790

    Article  Google Scholar 

  • Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT, Nägler TF (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J Petrol 39(7):1285–1306

    Article  Google Scholar 

  • Melson WG, O’Hearn T, Jarosewich E (2002) A data brief on the Smithsonian abyssal volcanic glass data file. Geochem Geophys Geosyst 3(4):1–11

    Article  Google Scholar 

  • Meyzen CM, Ludden JN, Humler E, Luais B, Toplis MJ, Mével C, Storey M (2005) New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem Geophys Geosyst 6(11). doi:10.1029/2005GC000979

  • Meyzen CM, Blichert-Toft J, Ludden JN, Humler E, Mevel C, Albarede F (2007) Isotopic portrayal of the Earth’s upper mantle flow field. Nature 447:1069–1074

    Article  Google Scholar 

  • Michard A, Montigny R, Schlich R (1986) Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge. Earth Planet Sci Lett 78(1):104–114

    Article  Google Scholar 

  • Munschy M, Schlich R (1989) The Rodriguez Triple Junction (Indian Ocean): structure and evolution for the past one million years. Mar Geophys Res 11:1–14. doi:10.1007/BF00286244

    Article  Google Scholar 

  • Murton BJ, Tindle AG, Milton JA, Sauter D (2005) Heterogeneity in southern Central Indian Ridge MORB: implications for ridge–hot spot interaction. Geochem Geophys Geosyst 6(3). doi:10.1029/2004GC000798

  • Natland JH (1991) Indian Ocean crust. In: Floyd PA (ed) Oceanic basalts. Blackie and Sons, Glasgow, pp 289–310

    Google Scholar 

  • Nauret F, Abouchami W, Galer SJG, Hofmann AW, Hémond C, Chauvel C, Dyment J (2006) Correlated trace element-Pb isotope enrichments in Indian MORB along 18–20S, Central Indian Ridge. Earth Planet Sci Lett 245(1):137–152

    Article  Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Super-mobility of hot Indian lithosphere. Tectonophys 131(1–2):147–156

    Article  Google Scholar 

  • Othman DB, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94(1):1–21

    Article  Google Scholar 

  • Patriat P, Sauter D, Munschy M, Parson LM (1997) A survey of the Southwest Indian Ridge axis between Atlantis II fracture zone and the Indian triple junction: regional setting and large scale segmentation. Mar Geophys Res 19:457–480. doi:10.1023/A:1004312623534

    Article  Google Scholar 

  • Price RC, Kennedy AK, Riggs-Sneeringer M, Frey FA (1986) Geochemistry of basalts from the Indian Ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts. Earth Planet Sci Lett 78(4):379–396

    Article  Google Scholar 

  • Raju KK, Chaubey AK, Amarnath D, Mudholkar A (2008) Morphotectonics of the Carlsberg Ridge between 62 20′ and 66 20′ E, northwest Indian Ocean. Mar Geol 252(3):120–128. doi:10.1016/j.margeo.2008.03.016

    Article  Google Scholar 

  • Ramana MV, Ramprasad T, Kamesh Raju KA, Desa M (1993) Geophysical studies over a segment of the Carlsberg Ridge, Indian Ocean. Mar Geol 115:21–28

    Article  Google Scholar 

  • Ray D, Misra S, Banerjee R (2013) Geochemical variability of MORB along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. J Asian Earth Sci 70–71:125–141. doi:10.1016/j.jseaes.2013.03.008

    Article  Google Scholar 

  • Ray D, Misra S, Widdowson M, Langmuir CH (2014) A common parentage for Deccan continental flood basalt and Central Indian Ocean Ridge basalt? A geochemical and isotopic approach. J Asian Earth Sci 84:188–200

    Article  Google Scholar 

  • Rehkämper M, Hofmann AW (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett 147(1):93–106

    Article  Google Scholar 

  • Rooney TO, Hanan BB, Graham DW, Furman T, Blichert-Toft J, Schilling JG (2012) Upper mantle pollution during Afar plume–continental rift interaction. J Petrol 53:365–389

    Article  Google Scholar 

  • Sang BY, Chang WO, Sang JP, Jonguk K, Jai WM (2014) Geochemistry and petrogenesis of mafic-ultramafic rocks from the Central Indian Ridge, latitude 8°–17° S: denudation of mantle harzburgites and gabbroic rocks and compositional variation of basalts. Int Geol Rev 56:1691–1719. doi:10.1080/00206814.2014.955539

    Article  Google Scholar 

  • Schilling JG, Kingsley RH, Hanan BB, McCully BL (1992) NdSrPb isotopic variations along the Gulf of Aden: evidence for Afar mantle plume–continental lithosphere interaction. J Geophys Res Solid Earth 97(B7):10927–10966

    Article  Google Scholar 

  • Sgualdo P, Aviado K, Beccaluva L, Bianchini G, Blichert-Toft J, Bryce JG, David WG, Claudio N, Siena F (2015) Lithospheric mantle evolution in the Afro-Arabian domain: insights from Bir Ali mantle xenoliths (Yemen). Tectonophysics 650:3–17

    Article  Google Scholar 

  • Standish JJ, Dick HJ, Michael PJ, Melson WG, O’Hearn T (2008) MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25 E): major element chemistry and the importance of process versus source. Geochem Geophys Geosyst 9(5). doi:10.1029/2008GC001959

  • Subbarao KV, Kempe DRC, Reddy VV, Reddy GR, Hekinian R (1979) Review of the geochemistry of Indian and other oceanic rocks. In: Ahrens LH (ed) Origin and distribution of the elements. Pergamon Press, Oxford, pp 367–399

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • White WM (1991) Trace elements in igneous processes. In: Dasch EJ (ed) Encyclopedia of earth sciences, vol 1. Macmillan, New York, pp 256–307

    Google Scholar 

  • Winter JD (2001) A introduction to igneous and metamorphic petrology. Printice Hall, New Jersey, p 697

    Google Scholar 

Download references

Acknowledgements

We are thankful to the crew and scientists of RV Dayang Yihao Cruise 26. The paper was greatly improved by insightful reviews by two anonymous reviewers. This work was supported by the the MOST of China (2016YFC0600402); the National Basic Research Programme of China (973 programme) (2015CB755905, 2012CB417305); the National Program on Global Change and Air–Sea Interaction, SOA (GASI-GEOGE-01); the Scientific Research Fund of the Second Institute of Oceanography, SOA (JG1603, JG1403); and the National Natural Science Foundation of China (41506073, 41506070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Tang, L., Yu, X. et al. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data. Mar Geophys Res 38, 47–60 (2017). https://doi.org/10.1007/s11001-016-9292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-016-9292-1

Keywords

Navigation