Skip to main content
Log in

Different thermal analysis technique application in determination of fold surface-free energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the crystallization rates and spherulitic growth rate of miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were determined using differential scanning calorimetry (DSC), real-time FTIR, and optical microscopy. FTIR results suggest that blending does not induce the creation of polymorphic crystalline forms of PVDF. SAXS data demonstrate the formation of interlamellar structure after blending. The fold surface-free energy (σ e) was analyzed and compared using different thermal analysis techniques. The isothermal crystallization curves obtained using real-time FTIR and DSC explored in two different methods: t 1/2 or Avrami equation. While the Avrami equation is more widespread and precise, both analytical methods gave similar free energy of folding values. However, it was found that the direct optical method of measuring spherulitic growth rate yields σ e values 30–50 % lower than those obtained from the overall crystallization rate data. Conversely, the σ e values were found to increase with increasing amorphous ACM phase content regardless of the analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Samsudin SA, Kukureka SN, Jenkins MJ. The equilibrium melting temperature and isothermal crystallisation kinetics of cyclic poly (butylene terephthalate) and styrene maleimide (c-PBT/SMI) blends. J Therm Anal Calorim. 2013;114:1307–15.

    Article  CAS  Google Scholar 

  2. De Santis F, Pantani R. Nucleation density and growth rate of polypropylene measured by calorimetric experiments. J Therm Anal Calorim. 2013;112:1481–8.

    Article  CAS  Google Scholar 

  3. Ding C, Cheng B, Wu Q. DSC analysis of isothermally melt-crystallized bacterial poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) films. J Therm Anal Calorim. 2011;103:1001–6.

    Article  CAS  Google Scholar 

  4. Song P, Chen G, Wei Z, Zhang W, Liang J. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly (l-lactic acid) with a low optical purity. J Therm Anal Calorim. 2013;111:1507–14.

    Article  CAS  Google Scholar 

  5. Hoffman J. Soc Plast Eng Trans 1964;4.

  6. Hoffman JD, Guttman CM, DiMarzio EA. On the problem of crystallization of polymers from the melt with chain folding. Faraday Discuss Chem Soc. 1979;68:177–97.

    Article  Google Scholar 

  7. Hoffman JD, Lauritzen J. Crystallization of bulk polymers with chain folding-Theory of growth of lamellar spherulites. J Res Natl Bur Stand. 1961;65A:297–336.

  8. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.

    Article  CAS  Google Scholar 

  9. Lauritzen J, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand A. 1960;64:73–102.

    Article  Google Scholar 

  10. Lauritzen JI Jr, Hoffman JD. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys. 2003;44:4340–52.

    Article  Google Scholar 

  11. Zhong Z, Guo Q. The miscibility and morphology of hexamine cross-linked novolac/poly (ϵ-caprolactone) blends. Polymer. 1997;38:279–86.

    Article  CAS  Google Scholar 

  12. Mao B, Cebe P. Avrami analysis of melt crystallization behavior of Trogamid. J Therm Anal Calorim. 2013;113:545–50.

    Article  CAS  Google Scholar 

  13. Shanks R, Gunaratne L. Comparison of reversible melting behaviour of poly (3-hydroxybutyrate) using quasi-isothermal and other modulated temperature differential scanning calorimetry techniques. J Therm Anal Calorim. 2011;104:1117–24.

    Article  CAS  Google Scholar 

  14. Guo Q, Harrats C, Groeninckx G, Reynaers H, Koch M. Miscibility, crystallization and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends. Polymer. 2001;42:6031–41.

    Article  CAS  Google Scholar 

  15. Cao Y, Feng J, Wu P. DSC and morphological studies on the crystallization behavior of β-nucleated isotactic polypropylene composites filled with Kevlar fibers. J Therm Anal Calorim. 2011;103:339–45.

    Article  CAS  Google Scholar 

  16. Alvarez VA, Pérez CJ. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal Calorim. 2012;107:633–43.

    Article  CAS  Google Scholar 

  17. Guo Q, Groeninckx G. Crystallization kinetics of poly (ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (ε-caprolactone). Polymer. 2001;42:8647–55.

    Article  CAS  Google Scholar 

  18. Guo Q, Harrats C, Groeninckx G, Koch M. Miscibility, crystallization kinetics and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends of epoxy resin and poly (ethylene oxide). Polymer. 2001;42:4127–40.

    Article  CAS  Google Scholar 

  19. Abolhasani MM, Naebe M, Jalali-Arani A, Guo Q. Influence of miscibility phenomenon on crystalline polymorph transition in poly (vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid. PLoS ONE. 2014;9:e88715.

    Article  Google Scholar 

  20. Abolhasani M, Jalali-Arani A, Nazockdast H, Guo Q. Poly (vinylidene fluoride)-acrylic rubber partially miscible blends: crystallization within conjugated phases induce dual lamellar crystalline structure. Polymer. 2013;54:4686–701.

    Article  CAS  Google Scholar 

  21. Abolhasani MM, Guo Q, Jalali-Arani A, Nazockdast H. Poly (vinylidene fluoride)–acrylic rubber partially miscible blends: phase behavior and its effects on the mechanical properties. J Appl Polym Sci. 2013;130:1247–58.

    Article  CAS  Google Scholar 

  22. Abolhasani MM, Naebe M, Jalali-Arani A, Guo Q. Crystalline structures and α → β and γ polymorphs transformation induced by nanoclay in PVDF-based nanocomposite. Nano;9:1450065-1–8.

  23. Abolhasani MM, Naebe M, Guo Q. A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites. Phys Chem Chem Phys. 2014;16:10679–87.

    Article  CAS  Google Scholar 

  24. Wang T, Nishi T. Spherulitic crystallization in compatible blends of poly (vinylidene fluoride) and poly (methyl methacrylate). Macromolecules. 1977;10:421–5.

    Article  CAS  Google Scholar 

  25. Boon J, Azcue JM. Crystallization kinetics of polymer–diluent mixtures. Influence of benzophenone on the spherulitic growth rate of isotactic polystyrene. Journal of Polymer Science Part A-2: polymer. Physics. 1968;6:885–94.

    CAS  Google Scholar 

  26. Linares A, Acosta J. Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J. 1997;33:467–73.

    Article  CAS  Google Scholar 

  27. Celli A, Zanotto E. Polymer crystallization: fold surface free energy determination by different thermal analysis techniques. Thermochim Acta. 1995;269:191–9.

    Article  Google Scholar 

  28. Allen RC, Mandelkern L. On regimes I and II during polymer crystallization. Polym Bull. 1987;17:473–80.

    Article  CAS  Google Scholar 

  29. Alamo R, Fatou J, Guzman J. Crystallization of polyformals: 1. Crystallization kinetics of poly (1,3-dioxolane). Polymer. 1982;23:374–8.

    Article  CAS  Google Scholar 

  30. Qiu Z, Yan C, Lu J, Yang W. Miscible crystalline/crystalline polymer blends of poly (vinylidene fluoride) and poly (butylene succinate-co-butylene adipate): spherulitic morphologies and crystallization kinetics. Macromolecules. 2007;40:5047–53.

    Article  CAS  Google Scholar 

  31. Melvin A. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  Google Scholar 

  32. Salimi A, Yousefi A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Testing. 2003;22:699–704.

    Article  CAS  Google Scholar 

  33. Sencadas V, Moreira MV, Lanceros-Méndez S, Pouzada AS, Gregório Filho R. α-to β Transformation on PVDF films obtained by uniaxial stretch. Materials science forum: Trans Tech Publ. 2006;514:872–6.

  34. Yousefi AA. Hybrid polyvinylidene fluoride/nanoclay/MWCNT nanocomposites: PVDF crystalline transformation. Iran Polym J. 2011;20:725–33.

    CAS  Google Scholar 

  35. Sencadas V, Gregorio R Jr, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci. 2009;48:514–25.

    Article  CAS  Google Scholar 

  36. Pan H, Na B, Lv R, Li C, Zhu J, Yu Z. Polar phase formation in poly (vinylidene fluoride) induced by melt annealing. J Polym Sci Part B. 2012;50:1433–7.

    Article  CAS  Google Scholar 

  37. Wunderlich B. Macromolecular physics. Amsterdam: Elsevier; 2012.

    Google Scholar 

  38. Grenier D, Homme P. Avrami analysis: three experimental limiting factors. J Polym Sci. 1980;18:1655–7.

    CAS  Google Scholar 

  39. Morgan L. Crystallization phenomena in polymers. II. The course of the crystallization. Philos Trans R Soc Lond Ser A Math Phys Sci. 1954;247:13–22.

    Article  Google Scholar 

  40. Liu J, Qiu Z, Jungnickel BJ. Crystallization and morphology of poly (vinylidene fluoride)/poly (3-hydroxybutyrate) blends. III. Crystallization and phase diagram by differential scanning calorimetry. J Polym Sci Part B. 2005;43:287–95.

    Article  Google Scholar 

Download references

Acknowledgements

The SAXS measurements were carried out on the SAXS beamline at the Australian Synchrotron, Victoria, Australia. The authors thank Nigel Kirby and Tao Zhang for the SAXS measurements and Dr. Mohandes for critically review the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Abolhasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolhasani, M.M., Rezaei Abadchi, M., Magniez, K. et al. Different thermal analysis technique application in determination of fold surface-free energy. J Therm Anal Calorim 119, 527–536 (2015). https://doi.org/10.1007/s10973-014-4121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4121-8

Keywords

Navigation