Skip to main content
Log in

Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We report an electrospun & thermally stable micro-fibers of poly(1,6-heptadiyne) (PHD), modified with ABS. Developed micro-fibers demonstrated hydrophobicity (WCA~145o ± 2o), and exhibited hierarchical surface morphology (confirmed by FESEM analysis). Simulation study showed Chi parameter i.e. χc = 7.88, & free energy of mixing i.e. 4.67 kcal/mol, thereby demonstrating its feasibility for electrospinning. PHD/ABS microfibers demonstrated low ice-adhesion ability, where, it effectively removed frozen water droplets in 8 s from hydrophobic surface, under an air-stream rate of 78 kPa/s. High thermal stability (200 °C), hydrophobicity and low ice-adhesion ability, demonstrate that PHD/ABS microfibers can be effectively used for multifunctional engineering/industrial applications.

Fabrication of poly (1,6-heptadiyne)/ABS microfibers via electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schlaich C, Wei Q, Haag R (2017) Mussel-inspired Polyglycerol coatings with controlled wettability: from Superhydrophilic to Superhydrophobic surface coatings. Langmuir 33:9508–9520. https://doi.org/10.1021/acs.langmuir.7b01291

    Article  CAS  PubMed  Google Scholar 

  2. Almohammadi H, Amirfazli A (2017) Understanding the drop impact on moving hydrophilic and hydrophobic surfaces. Soft Matter 13:2040–2053. https://doi.org/10.1039/C6SM02514E

    Article  CAS  PubMed  Google Scholar 

  3. Al-Azawi A, Latikka M, Jokinen V et al (2017) Friction and wetting transitions of magnetic droplets on micropillared Superhydrophobic surfaces. Small 13:1700860. https://doi.org/10.1002/smll.201700860

    Article  CAS  Google Scholar 

  4. Gore PM, Balakrishnan S, Kandasubramanian B (2019) Superhydrophobic corrosion inhibtion polymer coatings. Superhydrophobic polymer coatings: fundamentals, design, fabrication, and applications1st edn. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  5. Xue C-H, Li Y-R, Zhang P, Ma JZ, Jia ST (2014) Washable and Wear-resistant Superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and Hydrophobization. ACS Appl Mater Interfaces 6:10153–10161. https://doi.org/10.1021/am501371b

    Article  CAS  PubMed  Google Scholar 

  6. Liu D, Wang Q, Shen W, Wang D (2017) Self-cleaning antireflective coating with a hierarchical texture for light trapping in micromorph solar cells. J Mater Chem C 5:103–109. https://doi.org/10.1039/C6TC03152H

    Article  CAS  Google Scholar 

  7. Gupta P, Kandasubramanian B (2017) Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Appl Mater Interfaces 9:19102–19113. https://doi.org/10.1021/acsami.7b03313

    Article  CAS  PubMed  Google Scholar 

  8. Sahoo BN, Balasubramanian K, Sucheendran M (2015) Thermally triggered transition of superhydrophobic characteristics of micro- and nanotextured multiscale rough surfaces. J Phys Chem C:150610094322003. https://doi.org/10.1021/acs.jpcc.5b02917

  9. Zhang P, Lin L, Zang D et al (2017) Designing bioinspired anti-biofouling surfaces based on a Superwettability strategy. Small 13:1503334. https://doi.org/10.1002/smll.201503334

    Article  CAS  Google Scholar 

  10. Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Progress in silk materials for integrated water treatments: fabrication, modification and applications. Chem Eng J 374:437–470. https://doi.org/10.1016/j.cej.2019.05.163

    Article  Google Scholar 

  11. Gore PM, Khurana L, Siddique S, Panicker A, Kandasubramanian B (2018) Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. Environ Sci Pollut Res 25:3320–3334. https://doi.org/10.1007/s11356-017-0618-6

    Article  CAS  Google Scholar 

  12. Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environ Sci Pollut Res 25:11729–11745. https://doi.org/10.1007/s11356-018-1304-z

    Article  CAS  Google Scholar 

  13. Rajhans A, Gore PM, Siddique SK, Kandasubramanian B (2019) Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from mimicked effluent. J Environ Cheml Eng 7:103068. https://doi.org/10.1016/j.jece.2019.103068

    Article  CAS  Google Scholar 

  14. Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. J Mater Chem A 6:7457–7479. https://doi.org/10.1039/C7TA11260B

    Article  CAS  Google Scholar 

  15. Gore PM, Dhanshetty M, Kandasubramanian B (2016) Bionic creation of Nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv. https://doi.org/10.1039/C6RA24106A

    Article  CAS  Google Scholar 

  16. Mishra P, Balasubramanian K (2014) Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil–water separation. RSC Adv 4:53291–53296. https://doi.org/10.1039/C4RA07410F

    Article  CAS  Google Scholar 

  17. Arora R, Balasubramanian K (2014) Hierarchically porous PVDF/nano-SiC foam for distant oil-spill cleanups. RSC Adv 4:53761–53767. https://doi.org/10.1039/C4RA09245G

    Article  CAS  Google Scholar 

  18. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12:2125–2127. https://doi.org/10.1021/la950418o

    Article  CAS  Google Scholar 

  19. Bazin D, Faure C (2017) Superhydrophobic, highly adhesive arrays of copper hollow spheres produced by electro-colloidal lithography. Soft Matter 13:5500–5505. https://doi.org/10.1039/C7SM01256J

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang A, Liao R, Dixon SC et al (2017) Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition. RSC Adv 7:29275–29283. https://doi.org/10.1039/C7RA04116K

    Article  CAS  Google Scholar 

  21. Yuan Z, Chen H, Tang J et al (2007) A novel preparation of polystyrene film with a superhydrophobic surface using a template method. J Phys D Appl Phys 40:3485–3489. https://doi.org/10.1088/0022-3727/40/11/033

    Article  CAS  Google Scholar 

  22. Su X, Li H, Lai X, Zhang L, Wang J, Liao X, Zeng X (2017) Vapor–liquid sol–gel approach to fabricating highly durable and robust Superhydrophobic Polydimethylsiloxane@silica surface on polyester textile for oil–water separation. ACS Appl Mater Interfaces 9:28089–28099. https://doi.org/10.1021/acsami.7b08920

    Article  CAS  PubMed  Google Scholar 

  23. Qing Y, Hu C, Yang C, An K, Tang F, Tan J, Liu C (2017) Rough structure of Electrodeposition as a template for an Ultrarobust self-cleaning surface. ACS Appl Mater Interfaces 9:16571–16580. https://doi.org/10.1021/acsami.6b15745

    Article  CAS  PubMed  Google Scholar 

  24. Wu M, An N, Li Y, Sun J (2016) Layer-by-layer assembly of fluorine-free polyelectrolyte–surfactant complexes for the fabrication of self-healing Superhydrophobic films. Langmuir 32:12361–12369. https://doi.org/10.1021/acs.langmuir.6b02607

    Article  CAS  PubMed  Google Scholar 

  25. Hu Z, Berry RM, Pelton R, Cranston ED (2017) One-pot water-based hydrophobic surface modification of cellulose Nanocrystals using plant polyphenols. ACS Sustain Chem Eng 5:5018–5026. https://doi.org/10.1021/acssuschemeng.7b00415

    Article  CAS  Google Scholar 

  26. Sahoo BN, Kandasubramanian B (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Adv 4:11331. https://doi.org/10.1039/c3ra46193a

    Article  CAS  Google Scholar 

  27. Tian X, Shaw S, Lind KR, Cademartiri L (2016) Thermal processing of silicones for Green, scalable, and healable Superhydrophobic coatings. Adv Mater 28:3677–3682. https://doi.org/10.1002/adma.201506446

    Article  CAS  PubMed  Google Scholar 

  28. Murdoch TJ, Willott JD, de Vos WM et al (2016) Influence of anion Hydrophilicity on the conformation of a hydrophobic weak polyelectrolyte brush. Macromolecules 49:9605–9617. https://doi.org/10.1021/acs.macromol.6b01897

    Article  CAS  Google Scholar 

  29. Harvey BG, Guenthner AJ, Koontz TA et al (2016) Sustainable hydrophobic thermosetting resins and polycarbonates from turpentine. Green Chem 18:2416–2423. https://doi.org/10.1039/C5GC02893K

    Article  CAS  Google Scholar 

  30. Chung C-Y, Warkiani ME, Mesgari S et al (2015) Thermoset polyester-based superhydrophobic microchannels for nanofluid heat transfer applications. In: Eggleton BJ, Palomba S (eds) Sydney. New South Wales, Australia, p 96680D

    Google Scholar 

  31. Cao W-T, Liu Y-J, Ma M-G, Zhu J-F (2017) Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloids Surf A Physicochem Eng Asp 529:18–25. https://doi.org/10.1016/j.colsurfa.2017.05.064

    Article  CAS  Google Scholar 

  32. Söz CK, Yilgör E, Yilgör I (2016) Simple processes for the preparation of superhydrophobic polymer surfaces. Polymer 99:580–593. https://doi.org/10.1016/j.polymer.2016.07.051

    Article  CAS  Google Scholar 

  33. Haselwander TFA, Heitz W, Krügel SA, Wendorff JH (1996) Polynorbornene: synthesis, properties and simulations. Macromol Chem Phys 197:3435–3453. https://doi.org/10.1002/macp.1996.021971029

    Article  CAS  Google Scholar 

  34. Shang Y, Si Y, Raza A et al (2012) An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale 4:7847. https://doi.org/10.1039/c2nr33063f

    Article  CAS  PubMed  Google Scholar 

  35. Sung G, Choi M-C, Nagappan S, Lee WK, Han M, Ha CS (2013) Polynorbornene/fluorosilica hybrids for hydrophobic and oleophobic coatings. Polym Bull 70:619–630. https://doi.org/10.1007/s00289-012-0882-z

    Article  CAS  Google Scholar 

  36. Ruffoni A, Cavanna MV, Argentiere S et al (2016) Aqueous self-assembly of short hydrophobic peptides containing norbornene amino acid into supramolecular structures with spherical shape. RSC Adv 6:90754–90759. https://doi.org/10.1039/C6RA17116H

    Article  CAS  Google Scholar 

  37. Grove NR, Kohl PA, Bidstrup Allen SA et al (1999) Functionalized polynorbornene dielectric polymers: adhesion and mechanical properties. J Polym Sci B Polym Phys 37:3003–3010. https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3003::AID-POLB10>3.0.CO;2-T

    Article  CAS  Google Scholar 

  38. Janiak C, Lassahn PG (2001) The vinyl Homopolymerization of Norbornene. Macromol Rapid Commun 22:479–493. https://doi.org/10.1002/1521-3927(20010401)22:7<479::AID-MARC479>3.0.CO;2-C

    Article  CAS  Google Scholar 

  39. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26:3–65. https://doi.org/10.1016/S0079-6700(00)00043-5

    Article  CAS  Google Scholar 

  40. Rao NV, Mane SR, Kishore A, Das Sarma J, Shunmugam R (2012) Norbornene derived doxorubicin copolymers as drug carriers with pH responsive Hydrazone linker. Biomacromolecules 13:221–230. https://doi.org/10.1021/bm201478k

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharya S, Sarkar S, Shunmugam R (2013) Unique norbornene polymer based “in-field” sensor for As(iii). J Mater Chem A 1:8398. https://doi.org/10.1039/c3ta11587a

    Article  CAS  Google Scholar 

  42. Sarkar S, Shunmugam R (2014) Polynorbornene derived 8-hydroxyquinoline paper strips for ultrasensitive chemical nerve agent surrogate sensing. Chem Commun 50:8511–8513. https://doi.org/10.1039/C4CC03361B

    Article  CAS  Google Scholar 

  43. Mukherjee M, Ganivada MN, Venu P et al (2016) Unique nanotubes from polynorbornene derived graphene sheets. RSC Adv 6:40691–40697. https://doi.org/10.1039/C6RA05840J

    Article  CAS  Google Scholar 

  44. Mane SR, Sarkar SNVR et al (2015) An efficient method to prepare a new class of regioregular graft copolymer via a click chemistry approach. RSC Adv 5:74159–74161. https://doi.org/10.1039/C5RA12510C

    Article  CAS  Google Scholar 

  45. Fujiwara M, Shirato Y, Owari H et al (2007) Novel optical/electrical printed circuit board with Polynorbornene optical waveguide. Jpn J Appl Phys 46:2395–2400. https://doi.org/10.1143/JJAP.46.2395

    Article  CAS  Google Scholar 

  46. Cao K, Siepermann CP, Yang M et al (2013) Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv Funct Mater 23:2072–2080. https://doi.org/10.1002/adfm.201202466

    Article  CAS  Google Scholar 

  47. Joseph PJ, Kelleher HA, Allen SAB, Kohl PA (2005) Improved fabrication of micro air-channels by incorporation of a structural barrier. J Micromech Microeng 15:35–42. https://doi.org/10.1088/0960-1317/15/1/006

    Article  Google Scholar 

  48. Hess-Dunning AE, Smith RL, Zorman CA (2014) Development of polynorbornene as a structural material for microfluidics and flexible BioMEMS. J Appl Polym Sci 131. https://doi.org/10.1002/app.40969

    Article  Google Scholar 

  49. Magisetty R, Kumar P, Gore PM et al (2019) Electronic properties of poly(1,6-heptadiynes) electrospun fibrous non-woven mat. Mater Chem Phys 223:343–352. https://doi.org/10.1016/j.matchemphys.2018.11.020

    Article  CAS  Google Scholar 

  50. Magisetty R, Kumar P, Kumar V, Shukla A, Kandasubramanian B, Shunmugam R (2018) NiFe2O4/poly(1,6-heptadiyne) Nanocomposite energy-storage device for electrical and electronic applications. ACS Omega 3:15256–15266. https://doi.org/10.1021/acsomega.8b02306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  52. Gore PM, Zachariah S, Gupta P, K. B (2016) Multifunctional nano-engineered and bio-mimicking smart superhydrophobic reticulated ABS/fumed silica composite thin films with heat-sinking applications. RSC Adv 6:105180–105191. https://doi.org/10.1039/C6RA16781K

    Article  CAS  Google Scholar 

  53. Khurana L, Balasubramanian K (2016) Adsorption potency of imprinted starch/PVA polymers confined ionic liquid with molecular simulation framework. J Environ Cheml Eng 4:2147–2154. https://doi.org/10.1016/j.jece.2016.03.032

    Article  CAS  Google Scholar 

  54. Yadav R, Naebe M, Wang X, Kandasubramanian B (2016) Temperature assisted in-situ small angle X-ray scattering analysis of Ph-POSS/PC polymer nanocomposite. Sci Rep 6:6–9. https://doi.org/10.1038/srep29917

    Article  CAS  Google Scholar 

  55. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  56. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546. https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  57. Packham DE (1996) Work of adhesion: contact angles and contact mechanics. Int J Adhes Adhes 16:121–128. https://doi.org/10.1016/0143-7496(95)00034-8

    Article  CAS  Google Scholar 

  58. Simon SM, Chandran A, George G, Sajna MS, Valparambil P, Kumi-Barmiah E, Jose G, Biju PR, Joseph C, Unnikrishnan NV (2018) Development of thick Superhydrophilic TiO2–ZrO2 transparent coatings realized through the inclusion of poly(methyl methacrylate) and Pluronic-F127. ACS Omega 3:14924–14932. https://doi.org/10.1021/acsomega.8b01940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jose JP, Abraham J, Maria HJ et al (2016) Contact angle studies in XLPE hybrid Nanocomposites with inorganic Nanofillers. Macromol Symp 366:66–78. https://doi.org/10.1002/masy.201650048

    Article  CAS  Google Scholar 

  60. Gore PM, Purushothaman A, Naebe M et al (2019) Nanotechnology for oil-water separation. In: advanced research in Nanosciences for water technology1st edn. Springer Science+Business Media, New York

    Google Scholar 

  61. Perry RH, Green DW, Maloney JO (1984) Perry’s chemical engineers’ handbook6th edn. McGraw-Hill, New York

    Google Scholar 

  62. Roy BN (2002) Fundamentals of classical and statistical thermodynamics. Wiley, West Sussex

    Google Scholar 

  63. Edmister WC, Lee BI (1984) Applied hydrocarbon thermodynamics2nd edn. Gulf Pub. Co, Houston

    Google Scholar 

  64. Wei C, Jin B, Zhang Q et al (2018) Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: robust hydrophobic or slippery surfaces. J Alloys Compd 765:721–730. https://doi.org/10.1016/j.jallcom.2018.06.041

    Article  CAS  Google Scholar 

  65. Elsharkawy M, Tortorella D, Kapatral S, Megaridis CM (2016) Combating frosting with joule-heated liquid-infused Superhydrophobic coatings. Langmuir 32:4278–4288. https://doi.org/10.1021/acs.langmuir.6b00064

    Article  CAS  PubMed  Google Scholar 

  66. Kuptsov AH, Zhizhin GN (1998) Handbook of fourier transform Raman and infrared spectra of polymers. Elsevier, Amsterdam, New York

    Google Scholar 

  67. Jeon S, Shim C, Cho CS et al (2000) Catalytic cyclopolymerization and copolymerization of 1,6-heptadiynes by Mo(CO)6. J Polym Sci A Polym Chem 38:2663–2670. https://doi.org/10.1002/1099-0518(20000801)38:15<2663::AID-POLA50>3.0.CO;2-6

    Article  CAS  Google Scholar 

  68. Song W, Han H, Liao X et al (2014) Metathesis Cyclopolymerization of Imidazolium-functionalized 1,6-Heptadiyne toward Polyacetylene Ionomer. Macromolecules 47:6181–6188. https://doi.org/10.1021/ma501217b

    Article  CAS  Google Scholar 

  69. Ganivada MN, Kumar P, Shunmugam R (2015) A unique polymeric gel by thiol–alkyne click chemistry. RSC Adv 5:50001–50004. https://doi.org/10.1039/C5RA06339F

    Article  CAS  Google Scholar 

  70. Mahalingam S, Homer-Vanniasinkam S, Edirisinghe M (2019) Novel pressurised gyration device for making core-sheath polymer fibres. Mater Des 178:107846. https://doi.org/10.1016/j.matdes.2019.107846

    Article  CAS  Google Scholar 

  71. Heseltine PL, Ahmed J, Edirisinghe M (2018) Developments in pressurized gyration for the mass production of polymeric fibers. Macromol Mater Eng 303:1800218. https://doi.org/10.1002/mame.201800218

    Article  CAS  Google Scholar 

  72. Hong X, Mahalingam S, Edirisinghe M (2017) Simultaneous application of pressure-infusion-gyration to generate polymeric Nanofibers. Macromol Mater Eng 302:1600564. https://doi.org/10.1002/mame.201600564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor of DIAT (DU), Pune for motivation and support. The authors are also thankful to anonymous reviewers for their valuable suggestions, and comments, which helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balasubramanian Kandasubramanian or Raja Shunmugam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(AVI 250 mb)

ESM 2

(DOCX 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Gore, P.M., Magisetty, R. et al. Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. J Polym Res 27, 14 (2020). https://doi.org/10.1007/s10965-019-1981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1981-4

Keywords

Navigation